GWAS Data Cleaning

GENEVA Coordinating Center
Department of Biostatistics
University of Washington

October 31, 2011

Contents
1 Overview

2 Preparing Data
2.1 Data formats used in GWASTools
2.2 Creating the SNP Annotation Data Object
2.3 Creating the Scan Annotation Data Object
2.4 Creating the NetCDF Files

3 Batch Quality Checks
3.1 Calculate Missing Call Rate for Samples and SNPs
3.2 Calculate Missing Call Rates by Batch
3.3 Chi-Square Test of Allelic Frequency Differences in Batches

4 Sample Quality Checks
4.1 Sample genotype quality scoreso
4.2 BAlleleFreq variance analysis L L o
4.3 Missingness and heterozygosity within samples

5 Sample Identity Checks
5.1 Mis-annotated Gender Check
5.2 Relatedness and IBD Estimation
5.3 Population Structure

6 Case-Control Confounding
6.1 Principal Components Differences
6.2 Missing Call Rate Differences o o

7 Chromosome Anomaly Detection
7.1 B Allele Frequency filtering L
7.2 Loss of Heterozygosity« . o o o e
7.3 Statistics L e
7.4 Identify low quality samples Lo

18
18
32
35

40
40
40
46

51
51
93
64

69
69
73

8 SNP Quality Checks 80

8.1 Duplicate Sample Discordance 80
8.2 Mendelian Error Checking L o 83
8.3 Hardy-Weinberg Equilibrium Testing 89
9 Preliminary Association Tests 97
9.1 Association Test e 97
9.2 QQPlots 97
9.3 “Manhattan” Plots of the P-Values 98
9.4 SNP Cluster Plots e 98
10 Acknowledgements 102

1 Overview

This vignette takes a user through the data cleaning steps developed and used for genome wide
association data as part of the Gene Environment Association studies (GENEVA) project. This
project (http://www.genevastudy.org) is a collection of whole-genome studies supported by the
NIH-wide Gene-Environment Initiative. The methods used in these vignettes have been published
in Laurie et al. (2010).!

For replication purposes the data used here are taken from the HapMap project. These data were
kindly provided by the Center for Inherited Disease Research (CIDR) at Johns Hopkins University
and the Broad Institute of MIT and Harvard University (Broad). The data are in the same format
as these centers use in providing data to investigators: the content and format of these data are
a little different from those for processed data available at the HapMap project site. The data
supplied here should not be used for any purpose other than this tutorial.

Laurie, Cathy C., et al. Quality Control and Quality Assurance in Genotypic Data for Genome-Wide Association
Studies. Genetic Epidemiology 34, 591-602 (August 2010).

http://www.genevastudy.org

2 Preparing Data

2.1 Data formats used in GWASTools

The GWASTools package provides containers for storing annotation data called SNPAnnotation-
DataFrame and ScanAnnotationDataFrame (derived from the AnnotatedDataFrame class in the
Biobase package). The name “scan” refers to a single genotyping instance. Some subjects in a
study are usually genotyped multiple times for quality control purposes, so these subjects will have
duplicate scans. Throughout this tutorial, “scan” or “sample” refers to a unique genotyping instance.

The AnnotationDataFrame classes provide a way to store metadata about an annotation vari-
able in the same R object as the variable itself. When a new column is added to an Annotation-
DataFrame, we also add a column to the metadata describing what that data means. The SNP
and scan AnnotationDataFrame objects are stored in R data objects (.RData files) which can be
directly loaded into R.

The raw and called genotype data are stored in the Network Common Data Format (NetCDF).
NetCDF is a set of software libraries and machine-independent data formats, designed specifically
for large sets of array-oriented scientific data, and its use is widespread in those sciences that require
very large data sets. It is maintained by the Unidata program at the University Corporation for
Atmospheric Research (UCAR). This portable binary file format is convenient since it allows for
efficient multi-dimensional arrayed data (although we only use up to two dimensions).

In the GWASTools package, access to the NetCDF files is provided by the NcdfGenotypeR-
eader and NcdfIntensityReader classes. These classes are built on top of the ncdf package and
provide access to a standard set of variables defined for GWAS data. Additionally, the NetCDF
files and SNP and scan annotation can be linked through the GenotypeData and IntensityData
classes, which have slots for a NcdfGenotypeReader (or NcdfIntensityReader) object, a SnpAn-
notationDataFrame object, and a ScanAnnotationDataFrame object. When an object of one of
these classes is created, it performs checks to ensure that the annotation matches the data stored
in the NetCDF file and all required information is present. The majority of the functions in the
GWASTools package take GenotypeData or IntensityData objects as arguments.

2.2 Creating the SNP Annotation Data Object

All of the functions in GWASTools require a minimum set of variables in the SNP annotation data
object. The minimum required variables are

e snpID, a unique integer identifier for each SNP

e chromosome, an integer mapping for each chromosome, with values 1-27, mapped in order
from 1-22, 23=X, 24=XY (the pseudoautosomal region), 25=Y, 26=M (the mitochondrial
probes), and 27=U (probes with unknown positions)

e position, the base position of each SNP on the chromosome.

We create the integer chromosome mapping for a few reasons. The chromosome is stored as an
integer in the NetCDF files, so in order to link the SNP annotation with the NetCDF file, we use
the integer values in the annotation as well. For convenience when using GWASTools functions, the
chromosome variable is most times assumed to be an integer value. Thus, for the sex chromosomes,
we can simply use the chromosome values. For presentation of results, it is important to have the

http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/

mapping of the integer values back to the standard designations for the chromosome names, thus
the getChromosome () functions in the GWASTools objects have a char=TRUE option to return
the characters 1-22, X, XY, Y, M, U. The position variable should hold all numeric values of the
physical position of a probe. The SNP annotation file is assumed to list the probes in order of
chromosome and position within chromosome.

library(GWASTools)

library(GWASdata)

Load the SNP annotation (simple data frame)
data(affy_snp_annot)

Create a SnpAnnotationDataFrame

snpAnnot <- SnpAnnotationDataFrame (affy_snp_annot)
names of columns

varLabels (snpAnnot)

V V.V VVVV.yVv

[1] "snpID" "chromosome" "position" "rsID" "probeID"
[6] "missing.n1"

> # data
> head (pData (snpAnnot))

snpID chromosome position rsID probelD missing.nl
554407 869828 21 13733610 rs3132407 SNP_A-8340403 0
554588 869844 21 13852569 rs2775671 SNP_A-8340413 0
554565 869864 21 14038583 rs2775018 SNP_A-8340427 0
554544 869889 21 14136579 rs3115511 SNP_A-8340440 0
554990 869922 21 14396024 rs2822404 SNP_A-8340775 0
137187 869925 21 14404476 rs1556276 SNP_A-1968967 0

Add metadata to describe the columns

meta <- varMetadata(snpAnnot)

meta[c("snpID", "chromosome", "position", "rsID", "probeID"),
"labelDescription"] <- c("unique integer ID for SNPs",
paste("integer code for chromosome: 1:22=autosomes,",

"23=X, 24=pseudoautosomal, 25=Y, 26=Mitochondrial, 27=Unknown"),

"base pair position on chromosome (build 36)",
"RS identifier",
"unique ID from Affymetrix")

varMetadata (snpAnnot) <- meta

V+ 4+ + + 4+ +VVYyY

2.3 Creating the Scan Annotation Data Object

The scan annotation file holds attributes for each genotyping scan that are relevant to genotypic
data cleaning. These data include processing variables such as tissue type, DNA extraction method,
and genotype processing batch. They also include individual characteristics such as gender and race.
The initial sample annotation file is created from the raw data supplied by the genotyping center
and/or study investigator, providing a mapping from the raw data file(s) for each sample scan to

other sample information such as sex, coded as M and F, ethnicity, unique scan identifier, called
scanID, and unique subject identifier. Since a single subject may have been genotyped multiple
times as a quality control measure, it is important to distinguish between the scanID (unique
genotyping instance) and subjectID (person providing a DNA sample).

> # Load the scan annotation (simple data frame)

> data(affy_scan_annot)

> # Create a ScanAnnotationDataFrame

> scanAnnot <- ScanAnnotationDataFrame (affy_scan_annot)
> # names of columns

> varLabels(scanAnnot)

[1] "scanID" "subjectID" "family" "father" "mother"
[6] "CoriellID" '"race" "sex" "status" "genoRunID"
[11] "plate" "alleleFile" "chpFile" "missing.el" "duplicated"
[16] "het.A" "het .X"

> # data

> head(pData(scandnnot))

14
15
17
28

14
15
17
28

14
15
17
28

14
15

scanlD subjectID family father mother CorielllID race sex status

3 200150062 28 0 0 NA18912 YRI
5 200122600 1341
14 200122151 58
15 200033736 9
17 200116780 1344
28 200003216 28

NA19222 YRI
NA18508 YRI

O O O O O
O O O O O

NA18913 YRI

genoRunID
GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A03_31250
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_A05_31282
GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_B02_31236
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_B03_31252
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_B05_31284
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_C04_31270

GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_A03_31250
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_A05_31282.
GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_B02_31236.
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_B03_31252.
GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_B05_31284.
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_C04_31270.

GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_A03_31250.
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_A05_31282.
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_B02_31236.
GIGAS_g_GAINmixHapMapAffy2_ GenomeWideEx_6_B03_31252.

NAO7034 CEU

NA12056 CEU

F

=EE2Mmm R

O B»r O Fr O

plate

GAINmixHapMapAffy2
GAINmixHapMapAffy2
GAINmixHapMapAffy2
GAINmixHapMapAffy2
GAINmixHapMapAffy2
GAINmixHapMapAffy2
alleleFile

.BIRDSEED.
BIRDSEED.
BIRDSEED.
BIRDSEED.
BIRDSEED.
BIRDSEED.

BIRDSEED.
BIRDSEED.
BIRDSEED.
BIRDSEED.

ALLELE_SUMMARY.
ALLELE_SUMMARY.
ALLELE_SUMMARY.
ALLELE_SUMMARY.
ALLELE_SUMMARY.
ALLELE_SUMMARY.

chpFile
CHP.TXT
CHP.TXT
CHP.TXT
CHP.TXT

TXT
TXT
TXT
TXT
TXT
TXT

17 GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_B05_31284.BIRDSEED.CHP.TXT
28 GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_C04_31270.BIRDSEED.CHP.TXT

missing.el duplicated het.A het.X
3 0.0327272727 FALSE 0.2828485 0.2805611
5 0.0018181818 FALSE 0.3071142 0.0000000
14 0.0336363636 FALSE 0.2886546 0.2955912
15 0.0345454545 FALSE 0.2935273 0.2816901
17 0.0024242424 FALSE 0.2597793 0.0000000
28 0.0006060606 FALSE 0.2897898 0.0000000

> # Add metadata to describe the columns

> meta <- varMetadata(scanAnnot)

> metalc("scanID", "subjectID", "family", "father", "mother",

+ "CoriellID", "race", "sex", '"status", "genoRunID", "plate",
+ "alleleFile", "chpFile"), "labelDescription"] <-

+ c("unique integer ID for scans",

+ "subject identifier (may have multiple scans)',

+ "family identifier",

+ "father identifier as subjectID",

+ "mother identifier as subjectID",

+ "Coriell subject identifier",

+ "HapMap population group",

+ "sex coded as M=male and F=female",

+ "simulated case/control status" ,

+ "genotyping instance identifier",

+ "plate containing samples processed together for genotyping chemistry",
+ "data file with intensities",

+ "data file with genotypes and quality scores")

> varMetadata(scanAnnot) <- meta

2.4 Creating the NetCDF Files

The data for genotype calls, allelic intensities and other variables such as BAlleleFrequency are
stored as NetCDF files. More information on the NetCDF file format in general can be found at
http://www.unidata.ucar.edu/software /netcdf/. The GWASTools package depends on the ncdf
library. Documentation for the ncdf R library can be found at

http://cran.r-project.org/web /packages/ncdf/nedf.pdf. The ncdf library provides a convenient R
interface to create, populate and extract data from NetCDF files.

For each study, three different NetCDF files are created to be used in subsequent cleaning and
analysis steps. This format is used for the ease with which multi-dimensional arrays of data can be
stored and accessed.

All NetCDF files created have two dimensions, one called snp and one titled sample. The snp
dimension is of the same length as the number of probes that were released from the genotyping
center and listed in the SNP annotation file. The sample dimension is of length equal to the
number of genotyping scans released as listed in the sample annotation file. Further, all NetCDF
files have three variables in common: sampleID, chromosome and position. The samplelD is

http://www.unidata.ucar.edu/software/netcdf/
http://cran.r-project.org/web/packages/ncdf/ncdf.pdf

used for indexing the columns of the two dimensional values stored in the NetCDF files (genotype
calls, for example). The sampleID ordering must match the scanID values as listed in the sample
annotation file, see Section 2.3. The index to the SNP probes in the NetCDF file is the snpID,
which is stored as values of the SNP dimension. Since snpID is in chromosome and position order,
these variables also provide a check on ordering and are often used to select subsets of SNPs for
analysis. Analogous to the sample ordering, these values must match the snpID values listed in
the SNP annotation file, see 2.2. To prevent errors in ordering samples or SNPs, the functions in
the GWASTools package take as arguments R objects which will return an error on creation if the
sample and SNP annotation does not match the NetCDF file. We recommend always checking the
ordering of these variables before writing new versions of the SNP or sample annotation data files.

Genotype NetCDF Files

The genotype NetCDF files store genotypic data in 0, 1, 2 format indicating the number of “A”
alleles in the genotype (i.e. AA=2, AB=1, BB=0 and missing=-1). The conversion from AB format
and forward strand (or other) allele formats can be stored in the SNP annotation file.

The genotypic data are stored as a two-dimensional array, where rows are SNPs and columns
are samples. To store the genotype data, the raw data files are opened and checked to ensure
the sample identifier from the sample annotation file and the genotype data file match. If no
discrepencies exist, the probes listed in the file are checked against the expected list of probes, then
ordered and written to the NetCDF file. This process iterates over each file (sample). Diagnostics
are stored as the process continues so that after the data are written one can ensure the function
performed as expected.

Creating the Genotype NetCDF file for Broad

e The first step in creating a NetCDF file is to create a ‘shell’ NetCDF file to which the data
will be written. The function ncdfCreate creates the two dimensions and three common
variables as described above. It also assigns values of the SNP dimension as snpID values and
populates the chromosome and position variables.

In this case, we also want the genotype variable to be created, so the vars argument must be
set to "genotype". In the interest of computational feasibility, only 3 samples will be written
in this step.

> geno.nc.file <- "tmp.geno.nc"

> # get snp annotation data frame for function

> snp <- affy_snp_annot[,c("snpID", "chromosome", "position")]
> ncdfCreate(ncdf.filename = geno.nc.file,

+ snp.annotation = snp,

+ variables = c("genotype"),

+ array.name = "AffyGenomeWideSNP_6",
+ genome.build = "36",

+ n.samples = 3,

+ precision = "single")

[[11]

[1] 65536

e Now the shell has been created so we can call the ncdfAddData function to populate the
NetCDF with the genotype data stored in the raw data files. The data are written to the
NetCDF file one sample at a time and, simultaneously, the corresponding sample identifier
scanlID is written to the sampleID variable. The chpFile variable from the sample annotation
file holds the name of the CHP file for each sample scan; these are the files we must read in
to get genotype data for each sample.

first 3 samples only

scan.annotation <- affy_scan_annot[1:3, c("scanID", "genoRunID", "chpFile")]
names (scan.annotation) <- c("scanID", "scanName", "file")

indicate which column of SNP annotation is referenced in data files
snp.annotation <- affy_snp_annot[,c("snpID", "probeID")]

names (snp.annotation) <- c("snpID", "snpName")

V V. VvV Vv Vv VvV

e The arguments to ncdfAddData must be created. We need col.nums, which is an integer
vector indicating which columns of the raw text file contain variables for input.

col.nums <- as.integer(c(2,3,5,6))

names (col.nums) <- c("snp","geno","al","a2")

Define a path to the raw data CHP text files which are read by

ncdfAddData to access the raw genotypic data

path <- system.file("extdata", "affy_raw_data",
package="GWASdata")

+ V V. Vv Vv Vv

e All required arguments have been defined so we are ready to call ncdfAddData. This function
will take the previously created genotype NetCDF file and populate it with the genotype data
from the CHP text files and with the sample identifier scanID corresponding to that CHP
file in the sample annotation data.frame. A set of diagnostic values are written and stored in
diag.geno, so we must look at those to ensure no errors occurred. For more information on
the function ncdfAddData, such as argument specification, diagnostics recorded and examples,
please see the function documentation.

> diag.geno.file <- "diag.geno.RData"
> diag.geno <- ncdfAddData(path = path,
+ ncdf.filename = geno.nc.file,

+ snp.annotation = snp.annotation,
+ scan.annotation = scan.annotation,
+ sep.type = "\t",

+ skip.num = 1,

+ col.total = 6,

+ col.nums = col.nums,
+ scan.name.in.file = -1,

+ scan.start.index = 1,

+ diagnostics.filename = diag.geno.file,

+ verbose = FALSE)

> # Look at the values included in the "diag.geno" object which holds

> # all output from the function call
> names(diag.geno)

[1] "read.file" "row.num" "samples" "sample.match" "missg"
(6] "snp.chk" "chk"

> # "read.file' is a vector indicating whether (1) or not (0) each file
> # specified in the “files' argument was read successfully
table(diag.geno$read.file)

v

v

“row.num' is a vector of the number of rows read from each file
table(diag.geno$row.num)

v

3300
3

> # “sample.match' is a vector indicating whether (1) or not (0)

> # the sample name inside the raw text file matches that in the
> # sample annotation data.frame

> table(diag.geno$sample.match)

1
3

> # “snp.chk' is a vector indicating whether (1) or not (0)
> # the raw text file has the expected set of SNP names
> table(diag.geno$snp.chk)

1

> # “chk' is a vector indicating whether (1) or not (0) all previous
> # checks were successful and the data were written to the NetCDF file
> table(diag.geno$chk)

Although the diagnostic values indicated no issues, we will open the NetCDF file and extract
a small sampling of data. This illustrates the use of the NcdfGenotypeReader class for
retrieving data from a NetCDF file.

> (genofile <- NcdfGenotypeReader (geno.nc.file))

[1] "file tmp.geno.nc has 2 dimensions:"

[1] "sample Size: 3"

[1] "snp Size: 3300"

[1] "————————— "

[1] "file tmp.geno.nc has 4 variables:"

[1] "int sampleID[sample] Longname:sampleID Missval:0"

[1] "int position[snp] Longname:position Missval:-1"

[1] "int chromosome[snp] Longname:chromosome Missval:-1"

[1] "byte genotypelsnp,sample] Longname:genotype Missval:-1"

> # Take out genotype data for the first 3 samples and
> # the first 5 SNPs
> (genos <- getGenotype(genofile, snp=c(1,5), scan=c(1,3)))

[,11 [,2]1 [,3]
[1,] 0 0 0
[2,] 2 2 2
(3,1 2 2 2
[4,] 1 0 2
(5,] 0 2 1

> # Close the NetCDF file
> close(genofile)

[[11]
[1] 65536

Run the function ncdfCheckGenotype to check that the NetCDF file contains the same data
as the raw data files.

> check.geno.file <- '"check.geno.RData"

> check.geno <- ncdfCheckGenotype(path = path,
+ ncdf.filename = geno.nc.file,
snp.annotation = snp.annotation,
scan.annotation = scan.annotation,
sep.type = "\t",

skip.num = 1,

col.total = 6,

col.nums = col.nums,

scan.name.in.file = -1,

check.scan.index = 1:3,

n.scans.loaded = 3,

diagnostics.filename = check.geno.file,

+ verbose = FALSE)

> # Look at the values included in the '"check.geno" object which holds
> # all output from the function call

> names (check.geno)

+ + + + + + + + + +

10

[1] "read.file" "row.num" "sample.names" "sample.match" "missg"
[6] "snp.chk" "chk" "snp.order" "geno.chk"

> # 'snp.order' is a vector indicating whether (1) or not (0) the snp ids
> # are in the same order in each file.
> table(check.geno$snp.order)

1

> # 'geno.chk' is a vector indicating whether (1) or not (0) the genotypes
> # 1in the netCDF match the text file
> table(check.geno$geno. chk)

1

Intensity NetCDF Files

The intensity NetCDF files store quality scores and allelic intensity data for each SNP. The normal-
ized X and Y intensities as well as the confidence scores are written to the NetCDF for all samples,
for all SNPs. (A separate NetCDF file will store the BAlleleFreq and LogRRatio data.)

Aside from the three variables held in common with all NetCDF files (sampleID, chromosome
and position), the intensity and quality data are written to the intensity NetCDF in a two dimen-
sional format, with SNPs corresponding to rows and samples corresponding to columns. To write
the intensity data, the raw data files are opened and the intensities and quality score are read. Like
with the genotype data, if all sample and probe identifiers match between the data files and the
annotation files, the data are populated in the NetCDF and diagnostics are written.

Affymetrix data are provided in two files per genotyping scan. The CHP file holds the genotype
calls, used to create the genotype NetCDF file, as well as the confidence score, which is written
to the quality variable in the intensity NetCDF file. The normalized X and Y intensity data are
stored in the allele_summary files in the format of two rows per SNP, one for each allelic probe. A
separate function ncdfAddIntensity reads these data and writes them to the NetCDF file. Thus,
when writing the intensity NetCDF file using Affymetrix data, there are two function calls needed,
each of which opens and reads from the two sets of files.

Illumina data are provided in one file per genotyping scan. The confidence score, genotype call,
normalized intensities as well as the BAlleleFrequency and LogRRatio values are all stored in one
file. Because of this, we do not need to invoke the ncdfAddIntensity function when reading in
Illumina data to the intensity NetCDF.

Creating the Intensity NetCDF file for Broad

e The first step in creating the intensity NetCDF is to create a ‘shell’ NetCDF file to which
the data will be written. We can use the same function used for creating the shell genotype
NetCDF, ncdfCreate. The two dimensions and three common variables will be created along
with the X, Y and quality variables; the vars argument is set to write these. For a reasonable
computation time, we will create the file to hold data for 3 samples only.

11

> gxy.nc.file <- "tmp.gxy.nc"
> # get snp annotation data frame for function

> snp <- affy_snp_annot[,c("snpID", "chromosome", "position")]
> ncdfCreate(ncdf.filename = gxy.nc.file,

+ snp.annotation = snp,

+ variables = c("quality","X","Y"),

+ array.name = "AffyGenomeWideSNP_6",

+ genome.build = "36",

+ n.samples = 3,

+ precision = "single")

[[11]

[1] 65536

We next call the ncdfAddData function to populate the intensity NetCDF with the X and
Y intensities and the quality score stored in the raw CHP text files. The sample identifier
scanID is also populated at the same time. The chpFile variable from the sample annotation
file holds the name of the CHP file for each sample scan. From this file we can get all needed
data for the intensity NetCDF file.

first 3 samples only

scan.annotation <- affy_scan_annot[1:3, c("scanID", "genoRunID", "chpFile")]
names (scan.annotation) <- c("scanID", "scanName'", "file")

indicate which column of SNP annotation is referenced in data files
snp.annotation <- affy_snp_annot[,c("snpID", "probeID")]

names (snp.annotation) <- c("snpID", "snpName")

V V VvV Vv Vv VvV

The arguments to ncdfAddData must be created. We need col.nums, which is an integer
vector indicating which columns of the raw text file contain variables for input.

col.nums <- as.integer(c(2,4))

names (col.nums) <- c("snp","gqs")

Define a path to the raw data CHP text files which are read by

ncdfAddData to access the raw genotypic data

path <- system.file(”extdata”, "affy_raw_data",
package="GWASdata")

+ V VvV Vv v Vv

All required arguments have been defined so we are ready to call ncdfAddData. This function
will take the previously created intensity NetCDF file and populate it with the quality score
from the CHP text files. Recall the intensity values are stored in a different set of files so
those will be populated in the next step. A set of diagnostic values are written and stored in
diag.qual.

> diag.qual.file <- '"diag.qual.RData"
> diag.qual <- ncdfAddData(path = path,
+ ncdf.filename = gxy.nc.file,

+ snp.annotation = snp.annotation,

12

scan.annotation = scan.annotation,
sep.type = "\t",

skip.num = 1,

col.total = 6,

col.nums = col.nums,

scan.name.in.file = -1,
scan.start.index = 1,
diagnostics.filename = diag.qual.file,
verbose = FALSE)

+ + + + + + + + +

e As alluded to above, the normalized X and Y intensity values are stored in the allele
files. To write the intensities, we will call ncdfAddIntensity with similar arguments to the
ncdfAddData function. For further explanation of this function, please refer to the function
help documentation.

> scan.annotation <- affy_scan_annot[1:3, c("scanID", "genoRunID", "alleleFile")]
> names(scan.annotation) <- c("scanID", "scanName'", "file")
> diag.xy.file <- "diag.xy.RData"

> diag.xy <- ncdfAddIntensity(path = path,

+ ncdf.filename = gxy.nc.file,

snp.annotation = snp.annotation,

scan.annotation = scan.annotation,

scan.start.index = 1,

n.consecutive.scans = 3,

diagnostics.filename = diag.xy.file,

verbose = FALSE)

+ + + + + +

o We will open the NetCDF file and extract a small sampling of data. In this case we use the
NcdfIntensityReader class.

> # Open the NetCDF file we just created
> (intenfile <- NcdfIntensityReader(gxy.nc.file))

[1] "file tmp.qxy.nc has 2 dimensions:"

[1] "sample Size: 3"

[1] "snp Size: 3300"

[1] "= "

[1] "file tmp.gxy.nc has 6 variables:"

[1] "int sampleID[sample] Longname:sampleID Missval:0"
[1] "int position[snp] Longname:position Missval:-1"

[1] "int chromosome[snp] Longname:chromosome Missval:-1"
[1] "float quality[snp,sample] Longname:quality Missval:-9999"
[1] "float X[snp,sample] Longname:X Missval:-9999"

[1] "float Y[snp,sample] Longname:Y Missval:-9999"

13

> # Take out the normalized X intensity values for the first
> # 5 SNPs for the first 3 samples
> (xinten <- getX(intenfile, snp=c(1,5), scan=c(1,3)))

[,1] [,2] [,3]
[1,] 501.2622 385.5622 356.8760
[2,] 614.1541 651.9782 710.6095
[3,] 1968.4933 2550.7141 2265.3674
[4,] 1607.2856 293.1671 2906.5942
[5,] 398.2835 1902.5592 1355.5342

> # Close the NetCDF file
> close(intenfile)

[[1]1]
[1] 65536

e Run the function ncdfCheckIntensity to check that the NetCDF file contains the same data
as the raw data files.

scan.annotation <- affy_scan_annot[1:5,

c("scanID", "genoRunID", "chpFile", "alleleFile")]
names (scan.annotation) <- c("scanID", "scanName", "file",
check.qxy.file <- "check.qxy.RData"
check.qxy <- ncdfCheckIntensity(path = path,

intenpath = path,

ncdf.filename = gxy.nc.file,

snp.annotation = snp.annotation,

scan.annotation = scan.annotation,

>
+
> "inten.file")
>

>

+

+

+

+

+ sep.type

+

+

+

+

+

+

+

+

+

= ",
skip.num = 1,
col.total = 6,
col.nums = col.nums,
scan.name.in.file = -1,
check.scan.index = 1:3,

n.scans.loaded = 3,
affy.inten = TRUE,
diagnostics.filename =
verbose = FALSE)

check.qgxy.file,

BAlleleFrequency and LogRRatio NetCDF Files

The BAlleleFrequency and LogRRatio Net CDF file stores these values for every sample by SNP. For
Affymetrix data, these values must be calculated, but for Illumina data these values are calculated
by the BeadStudio software and may be provided by the genotyping center. For the purposes of
this tutorial, we will be calculating the BAlleleFrequency and LogRRatio values from the Broad

14

data as explained in the following manner. For a thorough explanation and presentation of an
application of these values, please refer to Peiffer, Daniel A., et al. (2006).2
For a given sample and SNP, R and 6 are calculated using the X and Y intensities, where

R=X+Y (1)
o— 2arctan(Y/X)
™

Illumina data may come with R and 6 values for each sample, where 6 corresponds to the
polar coordinate angle and R is the sum of the normalized X and Y intensities (not, as one might
assume, the magnitude of the polar coordinate vector). AffyMetrix data uses X and Y values from
a Cartesian system. To transform to the R and 6 polar coordinates, we use equation 1.

Regardless of which platform our data come from, we are able to find the R and 6 values
for every sample and every SNP. It is from these values that we calculate the LogRRatio and
BAlleleFrequency. The LogRRatio is given below. The expected value of R is derived from a plot
of 8 versus R for a given SNP. It is the predicted value of R derived from a line connecting the
centers of the two nearest genotype clusters.

R
LogRRatio = log (Observed"alues> @

Rexpected values

Variation in the LogRRatio across a single chromosome indicates possible duplication or deletion,
and is an indication of overall sample quality.

The BAlleleFrequency is the frequency of the B allele in the population of cells from which the
DNA is extracted. Each sample and SNP combination has a BAlleleFrequency value. Note the
BAlleleFrequency values vary for a subject with each DNA extraction and tissue used. After all
SNPs have been read and all samples have been clustered for a probe, the mean 6 “cluster” value
is calculated for each probe, for each of the three genotype clusters, resulting in 644,045 and 0pp
for every probe. Then the 0 value for each sample, call it 6, is compared to 844,045 and Opp.
The BAlleleFrequency is calculated

0 if 6, <044

(1/2) (0, — 0a4) if 044 < 0, < 0ap

Oap — 044
BAlleleFrequency =
12— 0a8) o, -
5+ Dhn —Oan if 0up <0, <0pp

[

if 0, > 0B

A 6, value of 0 or 1 corresponds to a homozygote genotype for sample n at that particular probe,
and a 6,, value of 1/2 indicates a heterozygote genotype. Thus, BAlleleFrequency € [0, 1] for each
probe. Across a chromosome, three bands are expected, one hovering around 0, one around 1 and
one around 0.5, and any deviation from this is considered aberrant.

2Peiffer, Daniel A., et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-
genome genotyping. Genome Research 16, 1136-1148 (September 2006).

15

We use the BAlleleFrequency and LogRRatio values to detect mixed samples or samples of
low quality, as well as chromosomal duplications and deletions. Samples that have a significantly
large (partial or full chromosome) aberration for a particular chromosome as detected from the
BAlleleFrequency values are recommended to be filtered out, for the genotype data are not reliable
in these situations. Because of these applications, the BAlleleFrequency and LogRRatio values are
a salient part of the data cleaning steps.

In addition to the three variables held in common with all NetCDF files (sampleID, chromosome
and position), the BAlleleFrequency and LogRRatio values are calculated and written to this
NetCDF in a two dimensional format, with SNPs corresponding to rows and samples corresponding
to columns. Because we have already completed the creation of both the genotype and intensity
NetCDF files, we simply use those files to access the data. The BAlleleFrequency and LogRRatio
values are calculated in subsets for efficiency and written to the corresponding subset indices in the
NetCDF file.

Creating the BAlleleFrequency and LogRRatio NetCDF file for Broad

e The first step in creating the BAlleleFrequency NetCDF is to create a ‘shell’ NetCDF file to
which the data will be written. We can use the same function used for creating the other shell
NetCDF files, ncdfCreate. The two dimensions and three common variables will be created
along with the BAlleleFrequency and LogRRatio variables. In order to allow for a reasonable
computation time, we will create the file to hold data for 3 samples only.

> bl.nc.file <- "tmp.bl.nc"

> # get snp annotation data frame for function

> snp <- affy_snp_annot[,c("snpID", "chromosome", "position")]
> ncdfCreate(ncdf.filename = bl.nc.file,

+ snp.annotation = snp,

+ variables = c("BAlleleFreq","LogRRatio"),
+ array.name = "AffyGenomeWideSNP_6",

+ genome.build = "36",

+ n.samples = 3,

+ precision = "single")

[[1]1]

[1] 65536

e We now will calculate the BAlleleFrequency and LogRRatio values for each sample by SNP
and write these values to the NetCDF by calling the function BAFfromGenotypes. We will
also select “by.study” as the call method, so all 3 samples have their genotype clusters called
together. In normal usage, we recommend calling Affymetrix genotypes “by.plate” (in which
case the plate.name argument is passed to the function). For more detail regarding the
BAFfromGenotypes function, please see the function documentation. After the function is
complete, we will look at a few values to ensure the file was created successfully.

> xyNC <- NcdfIntensityReader (qxy.nc.file)
> genoNC <- NcdfGenotypeReader (geno.nc.file)

16

> BAFfromGenotypes (xyNC, genoNC,

+ bl.ncdf.filename = bl.nc.file,
+ min.n.genotypes = 0,

+ call.method ="by.study")

[[1]1]

[1] 196608

> close(xyNC)

[[1]1]
[1] 65536

> close(genoNC)

[[1]1]
[1] 131072

> # Upen the NetCDF file we just created
> (blfile <- NcdfIntensityReader(bl.nc.file))

[1] "file tmp.bl.nc has 2 dimensions:"

[1] "sample Size: 3"

[1] "snp Size: 3300"

[1] " "

[1] "file tmp.bl.nc has 5 variables:"

[1] "int sampleID[sample] Longname:sampleID Missval:0"

[1] "int position[snp] Longname:position Missval:-1"

[1] "int chromosome[snp] Longname:chromosome Missval:-1"

[1] "float BAlleleFreq[snp,sample] Longname:BAlleleFreq Missval:-9999"
[1] "float LogRRatio[snp,sample] Longname:LogRRatio Missval:-9999"

> # Look at the BAlleleFrequency values for the first 5 SNPs
> (baf <- getBAlleleFreq(blfile, snp=c(1,5), scan=c(1,3)))

[,11 [,2]1 [,3]
[1,] NA 1 NA
[2,] 0.0 NA 0.0
[3,] 0.0 NA NA
[4,] 0.5 1 0.0
[5,] 1.0 0 0.5

> # Close the NetCDF file
> close(blfile)

[[1]1]
[1] 65536

17

3 Batch Quality Checks

The overall goal of this step is to check the quality of the sample batches. Substantial quality
control is done by the genotyping centers prior to releasing the genotype data; however it is our
experience that despite the stringent quality controls it is still possible for batches with lower than
desired quality to pass the pre-release data quality checks. If a lower quality batch is detected
then it may be necessary to re-run the genotyping for that batch. We check the batch quality
by comparing the missing call rates between batches and looking for significant allele frequency
differences between batches.

3.1 Calculate Missing Call Rate for Samples and SNPs

The first step is to calculate the missing call rates for each SNP and for each sample. A high
missing call rate for a sample is often indicative of a poorly performing sample. It has been seen
that samples from DNA that has undergone whole-genome amplification (WGA) have a relatively
higher missing call rate. Similarly a high missing call rate for a SNP is indicative of a problem
SNP. Experience from the GENEVA studies has shown that there seem to be a subset of SNPs from
which genotype calls are more difficult to make than others. We calculate the missing call rates in
a two step process: first the missing call rates over all samples and SNPs are calculated, then the
missing call rates are calculated again, filtering out SNPs and samples that have an initial missing
call rate greater than 0.05. The initial SNP missing call rate over all samples is saved in the SNP
annotation data file as missing.nil. The analogous idea is applied to the samples: missing.el
is saved in the sample annotation file and corresponds to the missing call rate per sample over all
SNPs, excluding those SNPs with all calls missing. The missing.n2 is calculated as the call rate
per SNP over all samples whose missing.el is less than 0.05. Again, similarly for the samples,
missing.e2 is calculated for each sample over all SNPs with missing.n2 values less than 0.05. It
is important to remember that the Y chromosome values should be calculated for males only, since
we expect females to have no genotype values for the Y chromosome.

Calculate missing.nl

e This step calculates and examines missing.n1, the missing call rate per SNP over all samples
by calling the function missingGenotypeBySnpSex. This function takes a GenotypeData
object as an argument, and requires that the scan annotation of this object contains a “sex”
column. There is also an option to send a vector of SNPs to exclude from the calculation,
which is what we will use later to find missing.n2. For now, we will use all SNPs for each
sample, being sure to calculate by gender. The function returns a list, with one element that
holds the missing counts for each SNP and one element that holds the sex counts; we will
save these results to be used later.

library(GWASTools)

library(GWASdata)

sex is required for this function, so we load the scan annotation
data(affy_scan_annot)

scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)

open the netCDF file and create a GenotypeData object

V V. VvV Vv Vv VvV

18

ncfile <- system.file("extdata", "affy_geno.nc",
package="GWASdata")
nc <- NcdfGenotypeReader (ncfile)
genoData <- GenotypeData(nc, scanAnnot=scandnnot)
Calculate the number of missing calls for each snp over all samples
for each gender separately
miss <- missingGenotypeBySnpSex(genoData)
Examine the results
length(miss)

V VV VVVV + VvV

(1] 3
> names (miss)
[1] "missing.counts" "scans.per.sex" "missing.fraction"

> head(miss$missing.counts)

MF
869828 0 0
869844 0 0
869864 0 0
869889 0 0
869922 0 0
869925 0 0

> miss$scans.per.sex

M F
27 20

> head (miss$missing.fraction)

869828 869844 869864 869889 869922 869925
0 0 0 0 0 0

The Y chromosome should be missing for all females, but an occasional probe on the Y chro-
mosome is called in a female. missingGenotypeBySnpSex excludes females when calculating
the missing rate for Y chromosome SNPs. Note this may need to be changed later if there are
some gender mis-annotations because the Y chromosome SNP missing call rates may change.
We add the missing call rates to the SNP annotation table and save a new version.

get snp annotation

data(affy_snp_annot)

snpAnnot <- SnpAnnotationDataFrame (affy_snp_annot)
snpAnnot$missing.nl <- miss$missing.fraction

varMetadata (snpAnnot) ["missing.n1", "labelDescription"] <- paste(

vV V Vv Vv Vv

19

+ "fraction of genotype calls missing over all samples',
+ "except that females are excluded for Y chr SNPs')
> summary (snpAnnot$missing.nl)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.000000 0.003007 0.000000 0.468100

e We will create some plots of the missing call rates so we can easily identify any outliers. Plots
will be shown of Y chromosome SNP missing call rates for males, and overall SNP missing
call rates. We also find the number of SNPs with 100% missing, and the fraction of SNPs
with missing call rate less than 0.05 for each chromosome type.

> # Find the number of SNPs with every call missing
> length(snpAnnot$missing.nl[snpAnnot$missing.nl == 1])

[1] o

> # Fraction of autosomal SNPs with missing call rate < 0.05
> x <- snpAnnot$missing.nl[snpAnnot$chromosome < 23]
> length(x[x < 0.05]) / length(x)

[1] 0.9815

> # Fraction of X chromosome SNPs with missing call rate < 0.05
> x <- snpAnnot$missing.nl[snpAnnot$chromosome == 23]
> length(x[x < 0.05]) / length(x)

[1] 0.989

> # Fraction of Y chromosome SNPs with missing call rate < 0.05
> x <- snpAnnot$missing.nl[snpAnnot$chromosome == 25]
> length(x[x < 0.05]) / length(x)

(1] 0.99

Calculate missing.el

e This step calculates missing.el, which is the missing call rate per sample over all SNPs, by
chromosome. We read in the new SNP annotation file which holds the missing.n1 variable.
Since we have both sample and SNP annotation loaded, we create a GenotypeData object
including both these annotations to ensure consistency. For those SNPs with a missing.n1
value less than one, we call the missingGenotypeByScanChrom function that returns a list
with one element holding the missing counts per sample by chromosome and one element
holding the number of SNPs per chromosome. We check these values to ensure they are as
expected.

20

> hist(snpAnnot$missing.nl[snpAnnot$chromosome == 25],
+ xlab="Fraction of Y chr SNP missing calls",
+ main="Y Chromosome SNP Missing Call Rate for Males")

Y Chromosome SNP Missing Call Rate for Males

o _
(e'0]
o _|
(]

>

(&)

c

]

>

(o

g .

LL <
o _|
N
o_

[I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Fraction of Y chr SNP missing calls

Figure 1: Missing call rate over all probes on the Y chromosome for the male samples only. The
missing call rate for all females over the Y chromosome is identically 1. Although it may seem as
if three samples have a higher missing call rate, one must note the small scale on the x-axis. There
are no samples here that have an unacceptable missing call rate.

> # Want to exclude all SNP probes with 1007 missing call rate
> # Check on how many SNPs to exclude
> sum(abs (snpAnnot$missing.nl - 1) < le-6)

(11 0
> sum(snpAnnot$missing.nl == 1)

(11 0

21

> hist(snpAnnot$missing.nl, ylim=c(0,100),
+ xlab="SNP missing call rate",
+ main="Missing Call Rate for All Probes")

Missing Call Rate for All Probes

100
|

Frequency
60

40

20

o p— —
[I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

SNP missing call rate

Figure 2: Histogram of overall missing call rate per SNP. Note the y-axis has been truncated in
order to show the higher values of the missing call rate on the x-axis.

> # Create a variable that contains the IDs of these SNPs to exclude
> snpexcl <- snpAnnot$snpID[abs(snpAnnot$missing.nl - 1) < le-6 |

+ snpAnnot$missing.nl == 1]

> length(snpexcl)

(11 0

> # Use the missingGenotypeByScanChrom function
> miss <- missingGenotypeByScanChrom(genoData, snp.exclude=snpexcl)
> length(miss)

22

1] 3
> names (miss)
[1] "missing.counts" "snps.per.chr" "missing.fraction"

> head (miss$missing.counts)

21 22 X XY Y M
3 2 42 01000
5 0 42 0 00
14 2 62 1100 0
156 4 36 11000
17 2 41 0 01
281 10 0 00O

> head (miss$snps.per.chr)

21 22 X XY Y M
1000 1000 1000 100 100 100

> # Check to make sure that the correct number of SNPs were excluded
> sum(miss$snps.per.chr)

[1] 3300
> nrow(snpAnnot) - sum(miss$snps.per.chr)

snps
0

missingGenotypeByScanChrom calculates the missing call rate for each sample over all SNPs
For females, the missing call rate does not include the probes on the Y chromosome. The
values for missing.el are added to the sample annotation file.

> head(miss$missing.fraction)

3 5 14 15 17 28
0.0025000000 0.0018181818 0.0034375000 0.0043750000 0.0024242424 0.0006060606

> # Check the ordering matches the sample annotation file
> allequal (names(miss$missing.fraction), scanAnnot$scanID)

(1] TRUE

23

Add the missing call rates vector to the sample annotation file

scanAnnot$missing.el <- miss$missing.fraction

varMetadata(scanAnnot) ["missing.el", "labelDescription"] <- paste(
"fraction of genotype calls missing over all snps with missing.ni<1",
"except that Y chr SNPs are excluded for females')

summary (scanAnnot$missing.el)

vV + + Vv Vv Vv

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0006061 0.0018180 0.0028120 0.0030250 0.0040620 0.0078790

We will create a histogram of the overall missing call rate per sample in order to identify
any samples with a relatively larger missing call rate. It is known that genotype data taken
from DNA that has been through whole-genome amplification (WGA) has an overall higher
missing call rate; this is something that we would see at this step if any samples are of WGA
origin. We also look at the summary of the missing call rate for females and males separately
to ensure there are no large gender differences. Finally, we calculate the number of samples
with a missing call rate greater than 0.05. In this case, there are no samples but in other data
this may not be the case. If any samples have a high missing rate, we recommend further
investigation of what may be causing the missing calls; the samples with a missing call rate
greater than 0.05 should be filtered out due to low sample quality.

> # Look at missing.el for males
> summary(scanAnnot$missing.el[scanAnnot$sex == "M"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0006061 0.0016670 0.0018180 0.0026150 0.0033330 0.0078790

v

Look at missing.el for females
summary (scanAnnot$missing.el[scanAnnot$sex == "F"])

\2

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.001875 0.002812 0.003438 0.003578 0.004062 0.006562

\

Number of samples with missing call rate > 5J

v

sum(scanAnnot$missing.el > 0.05)
[1] ©

For some analyses we require the missing call rate for autosomes and the X chromosome to
be separated. We calculate these values here and add them to the sample annotation file.
Also, we will create a logical duplicated variable. We can identify the duplicated scans in
the sample annotation file by identifying the subject ids that occur more than once. Among
samples with the same subject id, the one with the lowest missing.el value will have the
variable duplicated set to FALSE. We then write a new version of the sample annotation with
these added variables.

24

> hist(scanAnnot$missing.el,
+ xlab="Fraction of missing calls over all probes',
+ main="Histogram of Sample Missing Call Rate for all Samples")

Histogram of Sample Missing Call Rate for all Samples

12

10

Frequency
6
|

[I I I I
0.000 0.002 0.004 0.006 0.008

Fraction of missing calls over all probes

Figure 3: Histogram of missing call rate for all samples over all probes.

> auto <- colnames(miss$missing.counts) Jinj, 1:22
missa <- rowSums(miss$missing.counts[,auto]) / sum(miss$snps.per.chr[auto])
> summary(missa)

v

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.001000 0.002000 0.003000 0.003266 0.004000 0.011500

> missx <- miss$missing.counts[,"X"] / miss$snps.per.chr["X"]
> summary(missx)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.001000 0.002000 0.002426 0.004000 0.009000

25

> # check they match sample annotation file
> allequal (names(missa), scanAnnot$scanID)

[1] TRUE
> allequal (names (missx), scanAnnot$scanID)
[1] TRUE

> # Add these separate sample missing call rates to the sample

> # annotation

> scanAnnot$miss.el.auto <- missa

> scanAnnot$miss.el.xchr <- missx

> # Order scanAnnot by missing.el so duplicate subjectIDs

> # with a higher missing rate are marked as duplicates

> scanAnnot <- scanAnnot[order (scanAnnot$subjectID, scanAnnot$missing.el),]
> scanAnnot$duplicated <- duplicated(scanAnnot$subjectID)

> table(scanAnnot$duplicated, exclude=NULL)

FALSE TRUE <NA>
43 4 0

> # Put scanAnnot back in scanID order; this is very important!!
> # Save the updated sample annotation

> scanAnnot <- scanAnnot[order (scanAnnot$scanID),]

> allequal (scanAnnot$scanID, sort(scanAnnot$scanID))

(1] TRUE

Calculate missing.n2

e This step calculates missing.n2, which is the missing call rate per SNPs with missing.e1 less
than 0.05 over all samples. This calculation is done separately for each sex as in missing.nl
in Section 3.1. We read in the sample annotation file which holds the missing.e1l variable. In
most cases, there will be samples with missing call rate greater than 0.05. However, because
of the high quality of the HapMap data, there are no samples in this case. We will continue
with the steps as if there are samples we must exclude from the missing.n2 calculation. We
call the missingGenotypeBySnpSex function just as we did to calculate for missing.n1, but
this time we include the list of sample numbers to exclude from the calculation (although here
that list is empty). We review the values returned from the function and save the results.

> sum(scanAnnot$missing.el > 0.05)
(11 0

> # Even though there are no samples with missing.el > 0.05,
> # we will go through the full process for the tutorial

26

> # Find the samples with missing.el > .05 and make a vector of

> # scanlID to exclude from the calculation

> scan.exclude <- scanAnnot$scanID[scanAnnot$missing.el > 0.05]

> # Call missingGenotypeBySnpSex and save the output

> miss <- missingGenotypeBySnpSex(genoData, scan.exclude=scan.exclude)
> length(miss)

(1] 3

> names(miss) # Check that all SNPs are listed

[1] "missing.counts" "scans.per.sex" "missing.fraction"
> dim(miss$missing.counts)

[1] 3300 2

> miss$scans.per.sex

M F
27 20

> dim(miss$missing.fraction)
NULL

> # Make sure ordering matches snp annotation
> allequal (snpAnnot$snpID, as.numeric(names(miss$missing.fraction)))

(1] TRUE

snpAnnot$missing.n2 <- miss$missing.fraction

varMetadata (snpAnnot) ["missing.n2", "labelDescription"] <- paste(
"fraction of genotype calls missing over all samples with missing.el<0.05",
"except that females are excluded for Y chr SNPs")

summary (snpAnnot$missing.n2)

vV + + Vv V

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.000000 0.003007 0.000000 0.468100

As we did in the step for calculating missing.nl, we will create some plots of the missing
call rates so we can easily identify any outliers. Plots will be shown of Y chromosome SNP
missing call rates for males, and overall SNP missing call rates. We also find the number of
SNPs with 100% missing, and the fraction of SNPs with missing call rate less than 0.05 for
each chromosome type.

> # Find the number of SNPs with every call missing
> length(snpAnnot$missing.n2[snpAnnot$missing.n2 == 1])

27

> hist(snpAnnot$missing.n2[snpAnnot$chromosome == 25],
+ xlab="Fraction of Y chr SNP missing calls",
+ main="Y Chromosome SNP Missing Call Rate for Males")

Y Chromosome SNP Missing Call Rate for Males

o _
(e'0]
o _|
(]

>

(&)

c

]

>

(o

g .

LL <
o _|
N
o_

[I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Fraction of Y chr SNP missing calls

Figure 4: Missing call rate over all probes on the Y chromosome for the male samples excluding all
samples with a missing call rate greater than 0.05. The missing call rate for all females over the
Y chromosome is identically 1. Although it may seem as if three samples have a higher missing
call rate, one must note the small scale on the x-axis. There are no samples here that have an

unacceptable missing call rate.

(11 0

> # Fraction of autosomal SNPs with missing call rate < .05
> x <- snpAnnot$missing.n2[snpAnnot$chromosome < 23]
> length(x[x < 0.05]) / length(x)

[1] 0.9815

28

> hist(snpAnnot$missing.n2, ylim=c(0,10000),
+ xlab="SNP missing call rate", main="Histogram of SNP Missing Call Rate")

Histogram of SNP Missing Call Rate

8000 10000
|

Frequency
6000

4000

2000

0
L

[I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

SNP missing call rate

Figure 5: Histogram of overall missing call rate per SNP excluding samples with missing call rate
greater than 0.05. Note the y-axis has been truncated in order to show the higher values of the
missing call rate on the x-axis.

> # Fraction of X chromosome SNPs with missing call rate <.05
> x <- snpAnnot$missing.n2[snpAnnot$chromosome == 23]
> length(x[x < 0.05]) / length(x)

[1] 0.989

> # Fraction of Y chromosome SNPs with missing call rate <.05
> x <- snpAnnot$missing.n2[snpAnnot$chromosome == 25]
> length(x[x < 0.05]) / length(x)

[1] 0.99

29

Calculate missing.e2

e This step calculates missing.e2, which is the missing call rate per sample over all SNPs
with missing.n2 less than 0.05. We read in the new SNP annotation file which holds the
missing.n2 variable. Because we must exclude those SNPs with a sufficiently high missing
call rate, we will create a vector of SNPs that have missing.n2 greater than 0.05. Then, for
the non-excluded SNPs we call the missingGenotypeByScanChrom function, which returns a
list with one element holding the missing counts per sample by chromosome and one element
holding the number of SNPs per chromosome. We check these values to ensure they are as
expected.

> # Create a vector of the SNPs to exclude.
> snpexcl <- snpAnnot$snpID[snpAnnot$missing.n2 >= 0.05]
> length(snpexcl)

[1] 50

> # Use the missingGenotypeByScanChrom function
> miss <- missingGenotypeByScanChrom(genoData, snp.exclude=snpexcl)
> length(miss)

(11 3
> names (miss)
[1] "missing.counts" "snps.per.chr" "missing.fraction"

> head (miss$missing.counts)

21 22 X XY Y M
3 0 11 0990
5 0 20 0 00
14 2 30 190
15 2 12 190
17 2 10 0 01
28 0 00 O 00O

> head (miss$snps.per.chr)

21 22 X XY Y M
986 977 989 99 99 100

> # Check to make sure that the correct number of SNPs were excluded
> sum(miss$snps.per.chr)

[1] 3250

> nrow(snpAnnot) - sum(miss$snps.per.chr)

30

snps
50

> head(miss$missing.fraction)

3 5 14 15 17 28
0.0006347191 0.0006153846 0.0019041574 0.0019041574 0.0012307692 0.0000000000

> # Check the ordering matches the sample annotation file
> allequal (names (miss$missing.fraction), scanAnnot$scanID)

[1] TRUE

> # Add the missing call rates vector to the sample annotation file

> scanAnnot$missing.e2 <- miss$missing.fraction

> varMetadata(scanAnnot) ["missing.e2", "labelDescription"] <- paste(

+ "fraction of genotype calls missing over all snps with missing.n2<0.05",
+ "except that Y chr SNPs are excluded for females')

> summary(scanAnnot$missing.e2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0006154 0.0012690 0.0015420 0.0019040 0.0055380

> # Make sure the samples are still in order
> allequal (scanAnnot$scanID, sort(scanAnnot$scanID))

[1] TRUE

e We will create a histogram of the overall missing call rate per sample in order to identify
any samples with a relatively larger missing call rate. It is known that genotype data taken
from DNA that has been through whole-genome amplification (WGA) has an overall higher
missing call rate; we could identify that here. We also look at the summary of the missing call
rate for females and males separately to ensure there are no large gender differences. Finally,
we plot the samples sorted by missing call rate.

> # Look at missing.e2 for males
> summary(scanAnnot$missing.e2[scanAnnot$sex == "M"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0003077 0.0006154 0.0013790 0.0020000 0.0055380

v

Look at missing.e2 for females
summary (scanAnnot$missing.e2[scanAnnot$sex == "F"])

\

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0006347 0.0012690 0.0015870 0.0017610 0.0019040 0.0041260

31

> hist(scanAnnot$missing.e2, xlab="Fraction of missing calls over all probes
+ with missing call rate < 0.05",
+ main="Histogram of Sample Missing Call Rate for all Samples")

Histogram of Sample Missing Call Rate for all Samples

20

15

Frequency
10

]

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Fraction of missing calls over all probes
with missing call rate < 0.05

Figure 6: Histogram of missing call rate for all samples over all probes with missing call rate less
than 0.05. There are 896,250 SNPs below this threshold. Note the highest sample has an overall

missing call rate of 2 percent.

3.2 Calculate Missing Call Rates by Batch

e Next, the missing call rate by batch is calculated to check that there are no batches with
comparatively lower call rates. We find the distribution of number of samples per batch from
the sample annotation file variable geno.batch. We calculate the mean missing call rate for
all samples in each of the batches by simply taking the mean of all samples in a given batch of
the missing call rate per sample value, stored in the sample annotation file as missing.all.

> varLabels (scanAnnot)

32

> plot(sort(scanAnnot$missing.e2), rank(sort(scanAnnot$missing.e2)),

+ xlab="Fraction of missing calls over probes with MCR < 0.05",
+ ylab="rank", cex.lab=0.75,
+ main="Sorted Fraction of Missing Call Rate \nOver All Probes with MCR < 0.05")

Sorted Fraction of Missing Call Rate
Over All Probes with MCR < 0.05

40

30
o

rank
o]

20

10

o

I I I I I I
0.000 0.001 0.002 0.003 0.004 0.005

Fraction of missing calls over probes with MCR < 0.05

Figure 7: In increasing order, a plot of the fraction of missing calls for each sample over all probes
with missing call rate less than 0.05.

(1] "scanID" "subjectID" "family" "father" "mother"

[6] "CoriellID" "race" "sex" "status" "genoRunID"
[11] "plate" "alleleFile" "chpFile" "missing.el" "duplicated"
[16] "het.A" "het . X" "miss.el.auto" "miss.el.xchr" "missing.e2"

> # Check how many batches exist and how many samples are in each batch
> sum(is.na(scanAnnot$plate))

(11 0

33

> length(unique (scanAnnot$plate))
[11 3
> table(scanAnnot$plate, exclude=NULL)

GAINmixHapMapAffyl GAINmixHapMapAffy2 GAINmixHapMapAffy3 <NA>
15 15 17 0

> # Plot the distribution of the number of samples per batch.
> barplot (table(scanAnnot$plate),

+ ylab="Number of Samples", xlab="Batch',
main="Distribution of Samples per Batch",

+
+ cex.axis=0.85, cex.names=0.75, cex.lab=0.9)

Distribution of Samples per Batch

o0 _
—
(%]
@
Qo
£ =
©
n
Y—
o
S
()
Ko)
1S
>
P4
n -
o

GAINmixHapMapAffyl GAINmixHapMapAffy2 GAINmixHapMapAffy3

Batch

Figure 8: The distribution of the samples among the batches.

34

3.3

> # Examine the mean missing call rate per batch for all SNPs

> batches <- unique(scanAnnot$plate)

> bmiss <- rep(NA,length(batches)); names(bmiss) <- batches

> bn <- rep(NA,length(batches)); names(bn) <- batches

> for(i in 1:length(batches)) {

+ x <- scanAnnot$missing.el[is.element (scanAnnot$plate, batches[i])]
+ bmiss[i] <- mean(x)

+ bn[i] <- length(x)

+ }

To find the slope of the regression line from the mean missing call rate per batch regressed
on the number of samples per batch, we will take the results from ANOVA. Then we can plot
the mean missing call rate against the number of samples in the batch with the regression
line. For studies with more batches, this test can identify any batch outliers with regard to
missing call rate for samples in a given batch. We can do the same analysis using the mean
missing call rate for autosomal SNPs, or SNPs on the X chromosome in the exact same way,
substituting missing.el with either miss.el.auto or miss.el.xchr. Because the results
are nearly identical, we will not show them here.

> y <- Im(bmiss ~ bn)
> anova(y)

Analysis of Variance Table

Response: bmiss

Df Sum Sq Mean Sq F value Pr(>F)
bn 1 3.7660e-07 3.7660e-07 1.2532 0.4642
Residuals 1 3.0051e-07 3.0051e-07

Chi-Square Test of Allelic Frequency Differences in Batches

In this step, the chi-square test for differences in allelic frequency is performed between each
batch individually and a pool of all the other batches in the study. We then look at the
mean Y2 statistic over all SNPs for each batch as a function of the ethnic composition of
samples in a batch. We use the plate variable in the scan annotation to identify the samples
in each batch, so we must include the scan annotation in the GenotypeData object. Then
we call the function batchChisqTest which calculates the y? values from 2x2 tables for each
SNP, comparing each plate with the other plates. This function returns the genomic inflation
factors for each batch, as well as matrix of x? values for each SNP.

> # Perform the Chi-square test using the batchChisqTest function
> res <- batchChisqTest(genoData, batchVar="plate", return.by.snp=TRUE)
> close(genoData)

[[1]1]
[1] 65536

35

> plot(bn, bmiss,

+ xlab="Number of samples per batch", ylab="Mean missing call rate",
+ main="Mean Missing Call Rate vs\nSamples per Batch", cex.main=0.8)
> abline(y$coefficients)

Mean Missing Call Rate vs
Samples per Batch

Mean missing call rate
0.0026 0.0028 0.0030 0.0032 0.0034 0.0036

I I I I I
15.0 155 16.0 16.5 17.0

Number of samples per batch

Figure 9: The number of samples per batch plotted against the mean missing call rate. The
regression line has a nominal slope taken from the ANOVA results for the mean missing call rate
per batch regressed on the number of samples per batch.

> # chi-square values for each SNP
> dim(res$chisq)

[1] 2000 3

> # genomic inflation factor
> res$lambda

36

GAINmixHapMapAffyl GAINmixHapMapAffy2 GAINmixHapMapAffy3
0.5704312 0.2425606 0.3074938

> # Examine the average chi-square test statistics for each of the batches
> res$mean.chisq

GAINmixHapMapAffyl GAINmixHapMapAffy2 GAINmixHapMapAffy3
0.8868969 0.4586820 0.6386302

Next we test for association between batches and population groups, using a x? contingency
test. Then we look at the relationship between the ethnic composition of each batch and the
previously calculated x? test of allelic frequency between each batch and a pool of the other
batches. The point is to look for batches that differ from others of similar ethnic composition,
which might indicate a batch effect due to genotyping artifact. In this experiment, there
are only a few batches and wide variations in ethnicity among batches, so it is difficult to
interpret the results. In larger GWAS experiments, we generally observe a U-shaped curve of
allelic frequency test statistic as a function of ethnic composition.

> x <- table(scanAnnot$race, exclude=NULL)
> x

CEU YRI <NA>
29 18 0

> x[1] / sum(x)

CEU
0.6170213

> x[2] / sum(x)

YRI
0.3829787

> x <- table(scanAnnot$race, scanAnnot$plate)

> X
GAINmixHapMapAffyl GAINmixHapMapAffy2 GAINmixHapMapAffy3
CEU 8 10 11
YRI 7 5 6

> # Run an approximate chi-square test to see if there are ethnic effects
> chisq <- chisq.test(x)
> chisq$p.value

[1] 0.7167951

37

> # Check if ethnicity CEU has a batch effect

> # Calculate the fraction of samples in each batch that are CEU ethnicity
> batches <- unique(scanAnnot$plate)

> length(batches)

(1] 3

> eth <- rep(NA,length(batches)); names(eth) <- sort(batches)

> for(i in 1:length(batches)){

+ x <- scanAnnot$race[is.element (scanAnnot$plate, batches[i])]
+ x1 <- length(x[x == "CEU"])

+ eth[i] <- x1 / length(x)

+ }

> allequal (names(eth), names(res$mean.chisq))

(1] TRUE

38

Plot the average Chi-Square test statistic against the

fraction of samples that are CEU

plot(eth, res$mean.chisq, xlab="Fraction of CEU Samples per Batch',
ylab="Average Chi-square Test Statistic",
main="Fraction of CEU Samples per Batch
vs Average Chi-square Test Statistic")

abline(v=mean(eth), lty=2, col="red")

vV + + + Vv Vv Vv

Fraction of CEU Samples per Batch
vs Average Chi—square Test Statistic

o _
o . °
1
1
1
1
1
I
o o | i
s © |
T I
=]
)] |
ra)]
7 |
lq_J’\ :
- | .
v o -
© I
3 1
U 1
‘n 1
L - °
< |
=
o © !
CU 1
S
Q |
< I
I
LQ_ 1
o X
|
° I

| | | | T | |
0.54 0.56 0.58 0.60 0.62 0.64 0.66

Fraction of CEU Samples per Batch

Figure 10: A plot of the fraction of samples in each batch from the CEU population group versus
the average chi-square statistic for the particular batch. The red line is the average fraction of
samples that are of European ancestry in a batch.

39

4 Sample Quality Checks

In this step we examine sample quality using three methods. We check for outliers in genotype
quality score; we check for anomalous sample-chromosome pairs using BAlleleFreq variance analysis;
lastly, we check sample missingness and heterozygosities. We use Illumina data, since the B Allele
Frequency and Log R Ratio are included in the dataset.

4.1 Sample genotype quality scores

Genotype calling algorithms report quality scores and classify genotypes with insufficient confidence
as missing. This code calculates the mean and median genotype quality score for each sample.

e Calculate quality scores by sample. The qualityScoreByScan function requires both an
IntensityData object, to read the quality scores, and a GenotypeData object, to determine
which scans have missing genotypes and should be omitted from the calculation.

> library(GWASTools)

> library(GWASdata)

> data(illumina_scan_annot)

> scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
> gxyfile <- system.file("extdata", "illumina_gxy.nc",

+ package="GWASdata")

> qualNC <- NcdfIntensityReader (qxyfile)

> qualData <- IntensityData(quallNC, scanAnnot=scanAnnot)
> genofile <- system.file("extdata", "illumina_geno.nc",
+ package="GWASdata")

> genoNC <- NcdfGenotypeReader (genofile)

> genoData <- GenotypeData(genoNC, scanAnnot=scanAnnot)
> qual.results <- qualityScoreByScan(qualData, genoData)
> close(qualData)

[[11]

[1] 65536

Figure 11 shows the distribution of median quality scores; it is unsurprising that these are all
good, given that some quality checking happens at the genotyping centers. Clear outliers in this
plot would be cause for concern that the sample(s) in question were of significantly lower quality
than the other samples.

4.2 BAlleleFreq variance analysis

The "BAlleleFreq” was previously calculated for each SNP-sample combination. “BAlleleFreq” is
a standardized version of the polar coordinate angle. It calculates the frequency of the B allele
within a single sample. Under normal circumstances, the true frequency is 0, %, or 1. In cases of
allelic imbalance the true frequencies may vary. For example, in a population of trisomic cells, the

true frequencies would be 0, %, %, or 1. Here we calculate the variance of BAF (for SNPs called as

40

> hist(qual.results[, "median.quality"], main="Median Genotype Quality Scores
+ of Samples", xlab="Median Quality")

Median Genotype Quality Scores
of Samples

40

Frequency
20

10

[I I I
0.857 0.858 0.859 0.860

Median Quality

Figure 11: Median quality scores for each sample.

heterozygotes) within a sliding window along each chromosome for each sample. Each chromosome
is divided into 12 sections with equal numbers of SNPs and the variance is calculated in a window of
two adjacent sections (one-sixth of the chromosome), which slides along the chromosome in incre-
ments of one section. Regions (windows) with very high BAF variance can indicate chromosomal
anomalies.

Calculate the sliding window BAF standard deviation

This process identifies chromosome-sample pairs that have windows with very high BAlleleFreq
standard deviation, with “very high” defined as more than 4 standard deviations from the window’s
mean BAlleleFreq standard deviation over all samples. The output is a matrix listing all sample-
chromosome pairs with high BAlleleFreq standard deviations, the number of windows with high

41

SDs in each pair, and the sample’s sex. We examine plots of BAlleleFreq by position for each
identified chromosome-sample pair (though only a subset of plots are shown here).

e First, run the meanBAFbyScanChromWindow function. This requires both an IntensityData
object with BAlleleFreq and a GenotypeData object. Its output is a list of matrices, with
one matrix for each chromosome containing the standard deviation of BAlleleFreq at each
window in each scan.

> blfile <- system.file("extdata", "illumina_bl.nc",

+ package="GWASdata")

> bINC <- NcdfIntensityReader (blfile)

> blData <- IntensityData(blNC)

> nbins <- rep(12, 3)

> slidingBAF12 <- sdByScanChromWindow(blData, genoData, nbins=nbins)
> length(slidingBAF12)

[1]1 3

> length(slidingBAF12)
[1] 3

> dim(slidingBAF12[[1]1])
(1] 77 11

> dim(slidingBAF12[[2]])
[1] 77 11

e The function meanBAFSDbyChromWindow calculates the mean and standard deviation of the
BAlleleFreq standard deviations in each window in each chromosome over all samples. For
the X chromosome, males and females are calculated separately, and we save the results split
by sex.

> sds.chr <- meanSdByChromWindow(slidingBAF12,
+ scanAnnot$sex)
> sds.chr[["21"]]

[,1] [,2] [,3] [,4] [,5] [,6]
Mean 0.08262367 0.04971894 0.04991385 0.04578610 0.04156682 0.04139052
SD 0.02082800 0.01652451 0.01710329 0.01507464 0.01547533 0.01498545
[,7] [,8] [,9] [,10] [,11]
Mean 0.04120665 0.03912475 0.03953937 0.04189777 0.04518619
SD 0.01663141 0.01243865 0.01064164 0.01197254 0.01572490

> sds.chr[["X"]]

42

(,1] [,2] (,3]

Female Mean 0.14716196 0.09812081 0.13814218
Male Mean 0.45376698 0.40033938 0.42632934
Female SD 0.02180043 0.02262856 0.02079684
Male SD 0.07911264 0.21107322 0.14798379

[,7] [,8] [,9]
Female Mean 0.20995912 0.20889014 0.19920944
Male Mean 0.46238267 0.46621029 0.47629489
Female SD 0.03532426 0.02814304 0.02518857
Male SD 0.02354006 0.03209559 0.03023546

o O O O

[,4]

.16212499
.49092806
.01511986
.04035185

[,10]

0.16731386
0.46236851
0.

0.06024623

01615855

o O O O

o O O O

[,5]

.12026203
.51290672
.01887621
.12124391

[,11]

.16652783
.39731254
.01887127
.08535684

[,6]
0.16164527
0.46628564
0.03871470
0.03363656

Next, identify windows within sample-chromosome pairs that have very high BAlleleFreq
standard deviations compared to the same window in other samples. There are 80 sample-
chromosome pairs that are flagged in this analysis, and seem to be evenly distributed across

chromosomes.

> res12bindsd <- findBAFvariance(sds.chr, slidingBAF12,
+ scanAnnot$sex, sd.threshold=4)

> nrow(res12bin4sd)
[1] 6
> head(res12bin4sd)

scanlD chromosome bin sex

[1,] ||322|| ||21|| ||1ll nMu
[2’] n3o4n noqn ngn ngn
[3’] n350" noqn non ugn
[4,] "og@" noon non upyn
[5’] nogyn noon non uyn
[6,] ||324n ||22n ||2|| nFu

> sum(is.na(res12bin4sd))
[1] ©

> table(res12bindsd[, 2])

21 22

3 3

> all(res12bindsd[resi12bindsd[, "sex"] == "F"
+ scanAnnot$scanID[scanAnnot$sex == "F"])
[1] TRUE

43

b

"scanID"] Yin},

+ VVVVVVVYyV

scanID <- as.integer(res12bin4sd[, "scanID"])

chrom <- as.integer(res12bindsd[, "chromosome"])

chrom[res12bindsd[, "chromosome"] == "X"] <- 23

bincode <- paste("Bin", res12bin4sd[, "bin"], sep = " ")

sexcode <- paste("Sex", resi12bin4dsd[, "sex"], sep = " ")

code <- paste(bincode, sexcode, sep = ", ")

plotind <- 1

chromIntensityPlot (blData, scanID[plotind], chrom[plotind],
code=code[plotind], type="BAF")

Scan 322 — Chromosome 21 — Bin 1, Sex M

o ; . . K . :
i Lo E-W g DO9q OO
— 0% %% s & .05!005002 8, © o o 2 @° ©
o o . e o L . o° e . o oc; o o . o ¢
o: ° 0o . ° g o . . .
. o.
© | °- : :
© . . :
o °
o ° ° o o
o — o : : ;
o o Q’Q; % OQ . C o o oe © o
LL o 2 0% o © o ° 0 0a .o
) <gu ooo d‘?gocgo Gdﬁoo ° a ‘5“889 °o pmg;fﬁhi?%o US 0‘% @ DnD&&Ae °
2 8%{) LS %:Tg %c@?’ e JUD ® o
= P (Foa 818 o %7 %G Teg g vore
e < o ° o ; S
o | . o’ o o :
N
o
o . : :
o . ° g Q : o - : : .
@, - LX) A ‘o o. ‘o o :
g — o m&ﬁ BOB %&ﬁo“gmommhm
' I I | | | T
15 20 25 30 35 40 45

position (Mb)
horizontal line = 0.5000 0.3333 0.6667

e Call chromIntensityPlot to plot the BAlleleFreq of all SNPs on the indicated chromosome-
sample pair against position. This yields many plots that must be individually examined to
distinguish noisy data from chromosomal abnormalities.

> close(blData)

[[1]1]
[1] 65536

44

At this stage, we have generated plots of those chromosomes (over all chromosomes and samples)
that have unusually high BAF standard deviation. The next step in the process is to examine each
of these plots to look for anomalies. Note that this step will be labor intensive for any reasonably
large study. Better methods of detecting BAF anomalies are an active area of research.

45

4.3 Missingness and heterozygosity within samples

This step calculates the percent of missing and heterozygous genotypes in each chromosome of
each sample. We create boxplots of missingness by individual chromosome, as well as autosomal
and X chromosome heterozygosity in each population. This allows for identification of samples
that may have relatively high heterozygosity for all chromosomes, indicating a possible mixed
sample. Further, we are able to identify any outliers with regard to missingness. Plotting by
chromosome enables visualization of chromosomal artifacts on a particular subset of SNPs that lie
on a chromosome.

e We will call the function missingGenotypeByScanChrom to calculate the missing call rate.
Since the function returns missing counts per chromosome as well as snps per chromosome,
we divide to find the missing call rate per chromosome.

> miss <- missingGenotypeByScanChrom(genoData)

> miss.rate <- t(apply(miss$missing.counts, 1, function(x) {
+ x / miss$snps.per.chr}))

> miss.rate <- as.data.frame(miss.rate)

e First, Figure 12 shows a boxplot of missingness in the autosomes, the X chromosome, and the
pseudoautosomal region. Second, Figure 13 shows a boxplot of X chromosome missingness
for each sex.

o We will call the function hetByScanChrom to calculate the heterozygosity. We want to store
the heterozygosity calculations in the sample annotation, so after ensuring the ordering is
correct we will write the heterozygosity values and store them in the sample annotation.

> # Calculate heterozygosity by scan by chromosome
> het.results <- hetByScanChrom(genoData)
> close(genoData)

[[1]1]
[1] 131072

> # Ensure heterozygosity results are ordered correctly
> allequal (scanAnnot$scanID, rownames (het.results))

[1] TRUE

> # Write autosomal and X chr heterozygosity to sample annot
> scanAnnot$het.A <- het.results[,"A"]

> scanAnnot$het.X <- het.results[,"X"]

> varMetadata(scanAnnot) ["het.A", "labelDescription"] <-

+ "fraction of heterozygotes for autosomal SNPs"

> varMetadata(scanAnnot) ["het.X", "labelDescription"] <-

+ "fraction of heterozygotes for X chromosome SNPs"

46

> cols <- names(miss.rate) 7inj c(1:22, "X", "XY")
> boxplot(miss.rate[,cols], main="Missingness by Chromosome",
+ ylab="Proportion Missing", xlab="Chromosome")

Missingness by Chromosome

Proportion Missing
0.2
|

—
g
e —
° (o]
o _| —_— =
o
T T T T
21 22 X XY
Chromosome

Figure 12: Boxplot of missingness by chromosome.

e There are two plots for heterozygosity. Figure 14 shows a boxplot of heterozygosity over
the autosomes, subsetted by population. We recommend examining BAF plots for high
heterozygosity outliers, to look for evidence of sample contamination (more than 3 bands on
all chromosomes). Examination of low heterozygosity samples may also identify chromosomal
anomalies with wide splits in the intermediate BAF band. Figure 15 shows a boxplot of female
heterozygosity on the X chromosome, subsetted by population.

47

> boxplot(miss.rate$X ~ scanAnnot$sex,
+ main="X Chromosome Missingness by Sex",
+ ylab="Proportion Missing")

X Chromosome Missingness by Sex

o <}
N~
o
o
Lo
(o]
S
o O
=
%]
0
=
o
& 8 | o
o ©
o
o
S
o
Lo
Lo
S <}
o -
o :
1
I L
1
o
Lo
o
(@) T I
F M

Figure 13: Boxplot of X chromosome missingness by sex.

48

> boxplot (scanAnnot$het.A ~ scanAnnot$race,
+ main="Autosomal Heterozygosity")

Autosomal Heterozygosity

o
o
AN
(Y)__
o
- .
1
1
1
1
I
= '
0 |
d |
1
1
I
w 1
N - .
o :
1
1
1
1
1
1
—_—
(o]
N — 8
o
I I
CEU YRI

Figure 14: Boxplot of autosomal heterozygosity by continental ancestry.

49

> male <- scanAnnot$sex == "M"
> boxplot (scanAnnot$het.A[male] ~ scanAnnot$race[male],
+ main="X Chromosome Heterozygosity in Females")

X Chromosome Heterozygosity in Females

- :
o]
o X
1
1
i
o 1
™ - \
o 1
X
o
N_ 1
S ,
X
I
1
© - .
N :
o X
1
X
—_—
N~
(\!_
o
©
N 8
o
[I
CEU YRI

Figure 15: Boxplot of X chromosome heterozygosity by population.

50

5 Sample Identity Checks

This step performs a series of identity checks on the samples. First, samples are analyzed to
determine if there exist any gender discrepancies between the annotated and genetic genders in the
sample. Next, the relatedness among samples is investigated through IBD estimation. Finally, the
samples are checked for potential population substructure, which if unidentified can threaten the
validity of subsequent analyses.

5.1 Mis-annotated Gender Check

This section looks for discrepancies between the annotated and genetic genders. Gender identity
is usually inferred from X chromosome heterozygosity, but our experience is that this variable
can give ambiguous results when used alone (for example, in XXY males or due to genotyping
artifacts). Plots of the mean allelic intensities of SNPs on the X and Y chromosomes can identify
mis-annotated gender as well as sex chromosome aneuploidies. It is important to have accurate
gender annotation not only for completeness but also for analyses which treat male and female
samples separately. Any found gender mis-annotations are presented to the investigators in order
to resolve discrepancies. If a genetic and recorded gender do not match, a collective decision must
be made regarding the inclusion of those genetic data. In some cases a recording error explains
the discrepancy, but more often the discrepancy is unexplained. These cases are assumed to be a
sample mis-identification and these samples are excluded from subsequent analyses.

e In order to compare the mean X and Y chromosome intensities for all samples, we must
calculate the mean intensity for each sample by chromosome. The function meanIntensi-
tyByScanChrom calculates for each sample the mean and standard deviation of the sum of
the two allelic intensities for each probe on a given chromosome. A matrix with one row per
sample and one column per chromosome with entries [i, j] corresponding to either the mean
or standard deviation of all probe intensities for the i** sample and the j*» chromosome is
returned from the function.

> library(GWASTools)

> library(GWASdata)

> gxyfile <- system.file("extdata", "affy_qxy.nc",

+ package="GWASdata")

> intenNC <- NcdfIntensityReader(gqxyfile)

> inten.by.chrom <- meanIntensityByScanChrom(intenNC)
> close(intenNC)

[[1]1]

[1] 65536

> length(inten.by.chrom)
(1] 6

> names(inten.by.chrom)

o1

[1] "mean.intensity" "sd.intensity" '"mean.X" "sd.X"
[5] "mean.Y" "sd.Y"

Now we will use the calculated mean intensities by sample to identify any gender mis-
annotation or sex chromosome aneuploidies. For the plots, we will create a color coding
corresponding to the annotated gender, with blue for males and red for females. We will also
load in the SNP annotation file to find the probe counts for the X and Y chromosomes; we
use these in the plot axis labels.

> mninten <- inten.by.chrom[[1]] # mean intensities
> dim(mninten)

[1] 47 6

> data(affy_scan_annot)

> scandnnot <- ScanAnnotationDataFrame (affy_scan_annot)
> # Check to be sure sample ordering is consistent

> allequal (scanAnnot$scanID, rownames (mninten))

[1] TRUE

> # Assign each gender a color

> xcol <- rep(NA, nrow(scanAnnot))

> xcol[scanAnnot$sex == "M"] <- "blue"

> xcol[scanAnnot$sex == "F"] <- "red"

> data(affy_snp_annot)

> snpAnnot <- SnpAnnotationDataFrame (affy_snp_annot)
> nx <- sum(snpAnnot$chromosome == 23)

> ny <- sum(snpAnnot$chromosome == 25)

For two of the plots we will create next, we use the autosome and X chromosome heterozy-
gosity values calculated in an earlier step and stored in the sample annotation file. It is
assumed the sample annotation file holds these values. Four plots will now be created: mean
X chromosome intensity versus mean Y chromosome intensity, mean X chromosome inten-
sity versus X chromosome heterozygosity, mean X chromosome heterozygosity versus mean Y
chromosome intensity and mean autosomal heterozygosity versus mean X chromosome het-
erozygosity. The fourth plot applies to annotated females only, since males are expected to
have zero heterozygosity on the X chromosome.

#A11 intensities
x1 <-mninten[,"X"]; yl1 <- mninten[,"Y"]
mainl <- "Mean X vs \nMean Y Chromosome Intensity"

x2 <- mninten[,"X"]; y2 <- scanAnnot$het.X
main2 <- "Mean X Chromosome Vs
Mean X Chromosome Heterozygosity"

>

>

>

> #Het on X vs X intensity
>

>

+

> # Het on X vs Y intensity

52

y3 <- mninten[,"Y"]; x3 <- scandnnot$het.X
main3 <- "Mean X Chromosome Heterozygosity vs
Mean Y Chromosome Intensity"
X vs A het
x4 <- scanAnnot$het.A[scanAnnot$sex == "F"]
y4 <- scanAnnot$het.X[scanAnnot$sex == "F"]
main4 <- "Mean Autosomal Heterozygosity vs
Mean X Chromosome Heterozygosity"
cols <- c("blue","red")
mf <- c("male", "female")
xintenlab <- paste("X intensity (n=", nx, ")", sep="")
yintenlab <- paste("Y intensity (n=", ny, ")", sep="")
pdf ("DataCleaning-gender.pdf")
par (mfrow=c(2,2))
plot(x1l, yl1, xlab=xintenlab, ylab=yintenlab,
main=mainl, col=xcol, cex.main=0.8)
legend ("topright",mf,col=cols,pch=c(1,1),cex=0.8)
plot(x2, y2, col=xcol, xlab=xintenlab,
ylab="X heterozygosity", main=main2, cex.main=0.8)
legend("topleft", mf, col=cols, pch=c(1,1),cex=0.8)
plot(x3, y3, col=xcol, ylab=yintenlab,
xlab="X heterozygosity", main=main3, cex.main=0.8)
legend("topright", mf, col=cols, pch=c(1,1),cex=0.8)
plot(x4,y4, col="red", xlab="Autosomal heterozygosity",
ylab="X heterozygosity", main=main4, cex.main=0.8)
legend("topleft", mf, col=cols, pch=c(1,1),cex=0.8)
dev.off ()

VV+VV+ VYV +VV+VVVVV VYV + YV V VYV + VYV

5.2 Relatedness and IBD Estimation

In most studies, there are discrepancies between pedigrees provided and relatedness inferred from
the genotype data. To infer genetic relatedness, we estimate coefficients of identity by descent
(IBD). It is important to identify and record unannotated relationships so that analyses assuming
all subjects are unrelated can use a filtered subset of samples. From our experience, it is difficult
to accurately estimate low levels of relatedness, but higher levels can be more reliably determined.
Users are encouraged to employ analyses which take into accounts the IBD estimates themselves
rather than discrete relationship coefficients for any relationships. This step calculates identity
by descent (IBD) estimates for each population group using an expectation-maximization (EM)
approach for maximum likelihood estimation (MLE) of the IBD probabilities k1 and k0 3, and
then graphs k1 versus k0. The calculations are done using the gdsfmt and SNPRelate packages
developed as part of the GENEVA project. gdsfmt is a library that uses a file format similar to
the NetCDF files, and SNPRelate performs the IBD calculations using this data format.

3Weir, B. S., Anderson, A. D. & Hepler, A. B. Genetic relatedness analysis: modern data and new challenges.
Nature Reviews Genetics 7, 771-780 (October 2006).

53

Mean X vs Mean X Chromosome vs

Mean Y Chromosome Intensity Mean X Chromosome Heterozygosity
o
o
o A S o male] o male S
— o T P
%@O"’ o female o o female o & °
~ n B ° %R, 9
S g 2 S
LS S 94
= S o
ER 8
£ o —
Q
§ S _ 3 9
= o = —
£ — < o
> -
o gf i
%] ° o@ ?3 8 — o amoan
I I I I I o I I I I I
1600 1800 2000 2200 2400 1600 1800 2000 2200 2400
X intensity (n=1000) X intensity (n=1000)
Mean X Chromosome Heterozygosity vs Mean Autosomal Heterozygosity vs
Mean Y Chromosome Intensity Mean X Chromosome Heterozygosity
o
S 4 o
ot i o male ° male
o female o female
-~ 7 2 °
o > =T o
g 8 J g ° ° e
Il < =] °
S 2 o
~ N o °
= n o o °
5 =
c o 2 o °
g 8 A g o
£ S S N4 0 o
> — o OOO oo © o
%
8 _] ° 8 e f\rl - °
© o o o
I I I I I I I I I I I I I I
0.00 0.10 0.20 0.30 0.27 0.29 0.31 0.33
X heterozygosity Autosomal heterozygosity

Figure 16: Intensity plots for all samples, with blue indicating an annotated male and red corre-
sponding to annotated females

IBD Using Maximum Likelihood Estimation (MLE)

e We assume the sample annotation file has the duplicated variable, while the SNP file needs
to have chromosome and missing.nl variables. We will convert the genotype NetCDF file
to the gds format with the function convertNcdfGds. For more function information, please
refer to the function documentation.

> library(gdsfmt)
> library(SNPRelate)

SNPRelate: 0.9.1
Streaming SIMD Extensions (SSE) supported.

54

> ncfile <- system.file("extdata", "affy_geno.nc",
+ package="GWASdata")

> gdsfile <- "broad.hapmap.geno.gds"

> convertNcdfGds (ncfile, gdsfile)

SNP selection for the IBD estimation analysis has proved to be a salient component of the
analysis. One may consider choosing SNPs based upon patterns of linkage, minor allele
frequency or position along the genome. Here we simply use autosomal SNPs with missing
call rate less than 0.05 to include in the MLE IBD estimation.

> snp.auto <- pData(snpAnnot) [snpAnnot$chromosome < 23,]

> snp.auto.nonmiss <- snp.auto[snp.auto$missing.nl < 0.05,]
> snp.select <- snp.auto.nonmiss$snpID

> length(snp.select)

[1] 1963

Next, we perform the IBD estimation for the CEU population group. The snpgdsIBDMLE
function gives square matrices with rows and columns equal to the number of samples where
entries are the k0 and k1 coefficient estimates, respectively, for each pairwise combination
of samples. Note for larger studies this is a significant analysis since every possible pair of
samples must be considered.

> sample.sel <- scanAnnot$scanID[scanAnnot$race == "CEU"]
> length(sample.sel)

[1] 29
> gdsobj <- openfn.gds(gdsfile)
> ibd <- snpgdsIBDMLE(gdsobj, sample.id=sample.sel,

+ snp.id=snp.select, method="EM")

Identity-By-Descent analysis (MLE) on SNP genotypes:
Removing 202 SNPs (monomorphic, < MAF, or > missing rate)
Working space: 29 samples, 1761 SNPs

Use 1 CPU cores.
MLE IBD: the sum of all working genotypes = 50550

> closefn.gds(gdsobj)
> dim(ibd$k0)

[1] 29 29

> ibd$k0[1:5,1:5]

95

(,11 (,2]1 (,3] [,4] [,5]
[1,] 0 1 1 1 1

[2,] 1 0 1 1 1
(3,1 1 1 0 1 1
[4,] 1 1 1 0 1
(5,] 1 1 1 1 0

e We can now find the expected relationships between samples in the CEU group based on the
pedigree data that is stored in the sample annotation file. We will create a subset of the
sample annotation that has one line per sample and columns that hold family, father and
mother ids, where an entry of 0 indicates no familial data. Then the function pedigreeClean
is called, which checks for basic pedigree errors such as not all mothers annotated as female
or not all fathers as male, or that there exist no individual ids that appear in both the mother
and father columns. Please see the function documentation for more information on this
function.

> samp <- pData(scanAnnot) [scanAnnot$race == "CEU",
+ c("family", "subjectID", "father", "mother", "sex")]
> dim(samp)

[1] 29 5

> names(samp) <- c("family", "individ", "father", "mother", '"sex")
> samp[1:5,]

family individ father mother sex
5 1341 200122600 0 0 M
17 1344 200116780 0 0 M
29 1334 200019634 0 0 F
32 1334 200118596 0 0 M
42 1408 200074814 200094287 200019401 F

> pedigreeClean (samp)
NULL

e The functions that determine expected relationships require no duplicates in the pedigree.
This will be verified by a function call to pedigreeFindDuplicates. We will also call pedi-
greeCheck which determines if there are any singleton families, mothers/fathers whose sex
does not match, impossible relationships, or subfamilies.

> dups <- pedigreeFindDuplicates (samp)
> dups

$dups.mismatch

[1] family individ copies
<0 rows> (or O-length row.names)

56

$dups .match
family individ copies

1 1341 200099417 2
2 1408 200019401 2
3 1362 200169440 2

> uni.samp <- pedigreeDeleteDuplicates(samp, dups$dups.match)
> fc <- pedigreeCheck (uni.samp)

The output is a list consisting of vectors and a matrix: one.person is vector of family ids for
one-person families. mismatch.sex consists of family ids where sex of mother and/or father
is incorrect. impossible.related consists of family ids where either child is mother of self
or an individual is both child and mother of same person subfamilies. ident is a matrix
with family id (families with subfamilies), subfamily identifier, individual ids of persons in
the subfamily. (In subfamilies.ident the individual id’s include individuals identified as
mother or father who may not be in individ.)

> length(fc$one.person)

[1]1 0

> length(fc$mismatch.sex)

(1] 0

> length(fc$impossible.related)
[1]1 0

> length(fc$subfamilies.ident)
[1] 3

There are multiple subfamilies identified, so we will need to assign new family IDs to the
subfamililes.

> subf <- fc$subfamilies.ident
> head (subf)

family subfamily individ

1 1341 1 200122600
2 1341 1 200015835
3 1341 1 200039107
4 1341 2 200030290
5 1341 2 200191449
6 1341 2 200099417

57

> table(subf$family)

1341 1362
6 6

> subf.ids <- subf$individ[subf$subfamily == 2]

> newfam <- uni.samp$individ Jinj, subf.ids

> uni.samp$family[newfam] <- uni.samp$family[newfam] + 10000
> table(uni.samp$family)

1334 1340 1341 1344 1347 1362 1408 11341 11362
3 3 2 3 3 3 3 3 3

> pedigreeCheck (uni.samp)
NULL

Now from the verified sample list excluding duplicate samples, we can calculate the expected
relationships among the samples by calling the function pedigreePairwiseRelatedness.
The relationships looked for as annotated are: UN = unrelated, PO = parent/offspring, FS =
full siblings, HS = half siblings, and FC = first cousins. Families where mothers and fathers
are related are also looked for among the family annotations. It is this function output
with annotated expected relationships that we will compare with the relationship estimates
calculated earlier and saved in the R object ibd.

> rels <- pedigreePairwiseRelatedness (uni.samp)
> length(rels$inbred.fam)

(11 0

> relprs <- rels$relativeprs
> relprs([1:5,]

Individl 1Individ2 relation kinship family

1 200122600 200015835 PO 0.25 1341
2 200116780 200071490 PO 0.25 1344
3 200116780 200005043 U 0.00 1344
4 200071490 200005043 PO 0.25 1344
5 200019634 200118596 U 0.00 1334

> table(relprs$relation)

PO U
17 8

In order to plot the IBD coefficient estimates color coded by expected relationships, some
data manipulation must occur. The samples must be coded in terms of subject id and each
pair of samples must be annotated with the expected relationship.

58

VV+ 4+ VVVVVVVVV + VYV

relprs$s12 <- paste(relprs$Individl, relprs$Individ2)

ibd$subjectID <- scanAnnot$subjectID[is.element(
scanAnnot$scanID, ibd$sample.id)]

samplel.temp <- rep(ibd$subjectID, length(ibd$subjectID))

samplel.temp <- matrix(samplel.temp, nrow = dim(ibd$k0) [1])

sample2.temp <- t(samplel.temp)

ibd$samplel.subjectID <- as.array(samplel.temp)

ibd$sample2.subjectID <- as.array(sample2.temp)

ibd$s12 <- paste(ibd$samplel.subjectID, ibd$sample2.subjectID)

ibd$s21 <- paste(ibd$sample2.subjectID, ibd$samplel.subjectID)

ibd$rel <- array("U", length(ibd$s12))

ibd$rell[is.element (ibd$s12, relprs$si2[is.element (relprs$relation,
"P0")]) | is.element(ibd$s21, relprs$si2[is.element(
relprs$relation, "P0")])] <- "PO"

ibd$rel[ibd$samplel.subjectID == ibd$sample2.subjectID] <- "Dup"

table(ibd$rel, exclude=NULL)

Dup PO U <NA>

e Now the pedigree information is in the proper format for the IBD estimates to be plotted for
each pair of samples, color coded by expected relationship, see Figure 17. The orange line

35 40 766 0

segments span the values for the expected k0, k1 values, +2 standard deviations.

IBD Using Method of Moments (MoM)

IBD analysis can also be performed using the PLINK Method of Moments (MoM) approach. For
the MoM approach, we use a selection of autosomal SNPs with missing call rate less than 5 percent

and minor allele frequency > 0 that are spaced at least 15 kb apart.

e We calculate the allele frequency in the set of samples that will be analyzed (in this case,
YRI samples). The function apartSnpSelection randomly selects SNPs for which no pair

of SNPs is closer than a user specified threshold; we choose 15 kb here.

> # Allele frequency calculation in YRI samples

> # open the NetCDF file and create a GenotypeData object

> nc <- NcdfGenotypeReader (ncfile)

> genoData <- GenotypeData(nc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
> # sample selection - unduplicated YRI samples

> sample.excl <- scanAnnot$scanID[scanAnnot$race != "YRI" |

+ scanAnnot$duplicated]

> length(sample.excl)

(1] 30

> afreq <- alleleFrequency(genoData, scan.exclude=sample.excl)

>

close(genoData)

59

> ibdPlot (ibd$k0, ibd$k1, relation=ibd$rel,
+ main="HapMap CEU IBD Estimates \nEM Algorithm")

HapMap CEU IBD Estimates

EM Algorithm
S Y
— b, o Dup
o U
N PO
o _] T
o "
© | h
o
-
X
8
o .
N
o
\&b
g — -8 oocﬁ\\
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
ko
Figure 17: IBD estimates for the CEU samples.
[[11]
[1] 65536
> # Add allele frequency to SNP annotation
> afreq <- afreql[,"all"] # males and females combined
> snpAnnot$A.freq.yri <- afreq
> varMetadata (snpAnnot) ["A.freq.yri", "labelDescription"] <-
+ "frequency of allele A in YRI subjects"
> # Initial selection: autosomal SNPs with low missing call rate and MAF>0
> init.sel <- snpAnnot$missing.nl < 0.05 & snpAnnot$chromosome < 23 &
+ afreq > 0 & afreq < 1
> sum(init.sel)

60

[1] 1661

Call the function to select SNPs no closer than 15000 bases

set.seed(1001)

n <- 15000

rsnp2 <- apartSnpSelection(snpAnnot$chromosome, snpAnnot$position,
min.dist=n, init.sel=init.sel)

V + VvV Vv Vv VvV

sum (rsnp2)
[1] 1108

Add the SNP selection to the SNP annotation file

snpAnnot$ri15kb <- rsnp2

varMetadata (snpAnnot) ["r15kb", "labelDescription"] <- paste(
"Logical indicator for autosomal SNPs with missing.n1<0.05",
"and YRI MAF>0, at least 15 kb apart")

+ + Vv v Vv

We now use the function snpgdsIBDMoM to perform IBD for the YRI samples using the PLINK
MoM approach.

> sample.sel <- scanAnnot$scanID[scanAnnot$race == "YRI"]
> snp.select <- snpAnnot$snpID[snpAnnot$ri5kb]

> gdsobj <- openfn.gds(gdsfile)

> ibd <- snpgdsIBDMoM(gdsobj, sample.id=sample.sel,

+ snp.id=snp.select)

Identity-By-Descent analysis (PLINK method of moment) on SNP genotypes:
Removing O SNPs (monomorphic, < MAF, or > missing rate)
Working space: 18 samples, 1108 SNPs
Use 1 CPU cores.
PLINK IBD: the sum of all working genotypes = 19921

> closefn.gds(gdsobj)
> dim(ibd$k0)

[1] 18 18
> ibd$k0[1:5,1:5]

[,1] [,2] (,3] [,4] [,5]
[1,] 0.0000000 1.0000000 0.9115525 1.0000000 0.9227441
[2,] 1.0000000 0.0000000 0.5881596 0.7764557 0.8061041
[3,] 0.9115525 0.5881596 0.0000000 0.7690751 0.7035948
[4,] 1.0000000 0.7764557 0.7690751 0.0000000 0.8136060
[5,]1 0.9227441 0.8061041 0.7035948 0.8136060 0.0000000

61

e We can now find the expected relationships between samples in the YRI group based on the
pedigree data that is stored in the sample annotation file. We will create a subset of the
sample annotation that has one line per sample and columns that hold family, father and
mother ids, where an entry of 0 indicates no familial data. As before, we use the function
pedigreeClean to check for pedigree errors.

> samp <- pData(scanAnnot) [scanAnnot$race == "YRI",
+ c("family", "subjectID", "father", "mother", "sex")]
> dim(samp)

[1] 18 5

> names (samp) <- c("family", "individ", "father", "mother", "sex")
> samp[1:5,]

family individ father mother sex

3 28 200150062 0 0 F
14 58 200122151 0 0 F
15 9 200033736 0 0 F
28 28 200003216 0 0 M
50 9 200140995 0 0 M

> pedigreeClean (samp)
NULL

e As with the Europeans, we use pedigreeFindDuplicates to identify duplicates and and
pedigreeCheck to look for singleton families, mothers/fathers whose sex does not match,
impossible relationships, or subfamilies. In studies with family data, sorting pedigree incon-
sistencies is a convoluted task and it is important to utilize automated methods to help detect
any inconsistencies.

> dups <- pedigreeFindDuplicates (samp)
> dups

$dups.mismatch
[1] family dindivid copies
<0 rows> (or O-length row.names)

$dups.match
family individ copies
1 12 200160551 2

> uni.samp <- pedigreeDeleteDuplicates(samp, dups$dups.match)

> fc <- pedigreeCheck (uni.samp)
> (subf <- fc$subfamilies.ident)

62

1

e There is a subfamily with two unrelated people (likely founders), so we remove this family

family subfamily individ
58 1 200122151
58 2 200105428

from the pedigree.

> uni.samp <- uni.samp[!(uni.samp$family Jinj, subf$family),]

>

table (uni.samp$family)
5 9 12 28
3 3 3 3

> pedigreeCheck (uni.samp)

NULL

e Now from the verified sample list excluding duplicate samples, we can calculate the expected
relationships among the samples by calling the function pedigreePairwiseRelatedness.

> rels <- pedigreePairwiseRelatedness(uni.samp)

>

length(rels$inbred.fam)

[1] o

>
>

1 200150062 200003216 U 0.00

2 200150062 200034659 PO 0.25

3 200003216 200034659 PO 0.25

4 200033736 200140995 U 0.00

5 200033736 200066330 PO 0.25

> table(relprs$relation)

PO U

10 5

> relprs$s12 <- paste(relprs$Individl, relprs$Individ2)

> ibd$subjectID <- scanAnnot$subjectID[is.element (

+ scanAnnot$scanID, ibd$sample.id)]

> samplel.temp <- rep(ibd$subjectID, length(ibd$subjectID))
> samplel.temp <- matrix(samplel.temp, nrow = dim(ibd$k0) [1])
> sample2.temp <- t(samplel.temp)

> ibd$samplel.subjectID <- as.array(samplel.temp)

relprs <- rels$relativeprs
relprs([1:5,]

Individl Individ2 relation kinship family

63

28
28
28
9
9

ibd$sample2.subjectID <- as.array(sample2.temp)

ibd$s12 <- paste(ibd$samplel.subjectID, ibd$sample2.subjectID)

ibd$s21 <- paste(ibd$sample2.subjectID, ibd$samplel.subjectID)

ibd$rel <- array("U", length(ibd$s12))

ibd$rel[is.element (ibd$s12, relprs$si2[is.element(relprs$relation,
"pP0")]) | is.element(ibd$s21, relprs$si2[is.element(
relprs$relation, "P0")])] <- "PO"

ibd$rel [ibd$samplel.subjectID == ibd$sample2.subjectID] <- "Dup"

table(ibd$rel, exclude=NULL)

VV + + VvV VV VYV

Dup PO U <NA>
20 22 282 0

e Now the pedigree information is in the proper format for the IBD estimates to be plotted for
each pair of samples, color coded by expected relationship, see Figure 18. Several samples in
the YRI population show higher than expected relatedness.?

5.3 Population Structure
Principal Component Analysis on all ethnic groups

In this section, we perform principal component analysis (PCA) in order to detect any population
substructure that may exist among samples in a study. After calculating the eigenvectors for
the samples, we plot the values for each of the first 4 eigenvectors in a pairwise fashion for each
individual. By color coding the plots by annotated ethnicity, we can identify any individuals whose
recorded self-identified ethnicity differs from their inferred genetic ancestry. Further, we can use
the PCA-identified continental ancestry when stratifying samples by population group. It may also
be useful to include the values of some eigenvectors as covariates in association tests.

e We must load the SNP and sample annotation files to select autosomal SNPs with values
in missing.nl less than 0.05. Here we use all SNPs that meet these criteria, but it is
generally advisable to select a set of SNPs within which each pair has a low level of linkage
disequilibrium (e.g. 72 < 0.2). We must also ensure no duplicate samples are used for the
principal component calculations. A color code based upon sample continental ancestry is
assigned for plotting; CEU is coded as black, YRI as red. The snpgdsPCA function is called
with the SNP and sample subsets to calculate the first 32 eigenvectors. To read more about
this function, please see the function documentation.

snp.sel <- snpAnnot$snpID[snpAnnot$missing.nl < 0.05 &
snpAnnot$chromosome < 23]

sample.sel <- scanAnnot$scanID[scanAnnot$duplicated == FALSE]

gdsobj <- openfn.gds(gdsfile)

pca <- snpgdsPCA(gdsobj, sample.id=sample.sel,

>
+
>
>
>
+ snp.id=snp.sel)

4A second generation human haplotype map of over 3.1 million SNPs, supplementary information. The Interna-
tional HapMap Consortium, Nature 449, 851-861 (18 October 2007).

64

> ibdPlot (ibd$k0, ibd$k1, relation=ibd$rel,
+ main="HapMap YRI IBD Estimates \nPLINK MOM Approach")

HapMap YRI IBD Estimates
PLINK MOM Approach

o AN
N o Dup
R o U
PO
o _| AN
S .
© _ h
o
—
X
< ©
o N
e
'%Q\‘
R
(q\V] N
o | %Qth
\b%.,
o
o
o - o o \\
[I I I I [
0.0 0.2 0.4 0.6 0.8 1.0

ko

Figure 18: Method of Moment (MoM) estimates for the YRI samples. The yellow bars are the
expected positions (4/- 2 SD) for full siblings, half siblings and first cousins.

Principal Component Analysis (PCA) on SNP genotypes:
Removing 34 SNPs (monomorphic, < MAF, or > missing rate)
Working space: 43 samples, 1929 SNPs

Use 1 CPU cores.

PCA: the sum of all working genotypes = 82146
PCA: Mon Oct 31 23:32:14 2011 Begin (eigenvalues and eigenvectors)
PCA: Mon Oct 31 23:32:14 2011 End (eigenvalues and eigenvectors)

> closefn.gds(gdsobj)
> names (pca)

65

[1] "sample.id" "snp.id" "eigenval" ‘"eigenvect" "TraceXTX" "Bayesian"
[7] "genmat"

> length(pca$eigenval)
[1] 43

> dim(pca$eigenvect)
[1] 43 32

We will make a pairs plot showing the first four eigenvectors. A simple calculation is made
to find the fraction of variance among the samples as explained by each eigenvector.

Calculate the percentage of variance explained

by each principal component.

pc.frac <- pca$eigenval/sum(pca$eigenval)

1lbls <- paste("EV", 1:4, "\n", format(pc.frac[1:4], digits=2), sep="")
samp <- pData(scanAnnot) [match(pca$sample.id, scanAnnot$scanID),]

cols <- rep(NA, nrow(samp))

cols[samp$race == "CEU"] <- "black"

cols[samp$race == "YRI"] <- "red"

V V.V V VvV VYV

Parallel Coordinates Plot

A handy method of visualizing the effects of eigenvectors on clusters for a principal compo-
nents analysis is the parallel coordinates plot. Figure 20 shows this plot for all samples, colored
by ethnicity. The genetic diversity in the YRI group is apparent in the later eigenvectors,
while the remaining groups remain in clusters throughout.

66

> pairs(pca$eigenvect[,1:4], col=cols, labels=1lbls,
+ main = "CEU: black, YRI: red")

CEU: black, YRI: red

-0.2 02 04 -0.4 -0.1 0.1
| | | | N I I I |
o o° o % ° o R/ o é’
OQ&goo o %o %® Qo?;@° ° L] &%o - ;
EV1 | o
o
o° o owocgao ®, o ® °°O%°o% ° & o °&°§° %o |- g
|
< ° o °
o T o o o
o o i
N d o o
3 S| EV2 e 4
o ©°° o _ o o o o°
%§ og 41 0%, © ° ° °@o
b DG o & o °
. [°
o '% o O O o & °°‘b°&o o o § .°° 0% © oog
d —° °O ° ° ° o °° ° o
! o° °® I
° ° °
o o o —
o o o
o o o ° o o | N
o0 Y 0° ° o o og o
o N EV3 P
OQ:O o o go 8 °s L ©
@ oS, o° o o ° o
% o@ 8" 8 ° g 0o
; g %, . || 0.040 I
% LN 0% @ 0o % o -
o ° o ° ° o g
|
o o° o % ° ° o0
. 1% ° oo o o % o
T d o o ° ° °
oS Ty % ° ° o o %o o0® %o 20 ° EV4
— %o o % o 00 ° Lo ®
— ° ; 9 ov° e, °
o - a%° o ° P o
|
- ® - RS 0.038
- 8 % °o°
o T o -]]
! T T T T T T 1T 171
-0.2 0.0 0.1 -03 -01 01 03

Figure 19: First four eigenvectors calculated from the principal components analysis.

67

>
>
>
>
>
+

>
+
+
>
+
+
>

par.coord <- pca$eigenvect
rangel <- apply(par.coord, 2, function(x) range(x)[1])
rangeh <- apply(par.coord, 2, function(x) range(x)[2])

std.coord <- par.coord
for (i in 1:14)

std.coord[,i] <- (par.coord[,i] - rangel[i])/(rangeh[i]-rangel[i])
plot(c(0,15), c(0,1), type = 'n', axes = FALSE, ylab = "", xlab = "",
main = "Parallel Coordinates Plot

CEU: black, YRI: red")
for (j in 1:13)

for (i in sample(1:nrow(std.coord)))

lines(c(j,j+1), std.coord[i,c(j,j+1)], col=cols[i], 1wd=0.25)

axis(1l, at = 1:14, labels = paste("PC",1:14, sep = "."))

Parallel Coordinates Plot
CEU: black, YRI: red

W\ N

/ },.;;T,/ Y

| W Wﬁ/a i

DR A

qsmst\’f.'»,«/ll‘gf/‘ GO AR R

0 AGNL
AP »‘\u/ﬁ}m\‘\' « i)

! j

N
4

i/

/

Wi
i/

PC1 PC3 PC5 PC7 PCHY9 PC1ll PC.14

Figure 20: Parallel coordinates plot of first 14 eigenvectors, colored by ethnicity.

68

6 Case-Control Confounding

We recommend checking for case-control confounding as part of the data cleaning process for GWAS.
This involves checking both the principal components and the missing call rate for a relationship
with case status.

6.1 Principal Components Differences

This step examines differences in principal components according to case-control status.

e Collate PCA information with sample number, case-control status, and population group.

> princomp <- as.data.frame(pca$eigenvect)

> samples.nodup <- pData(scanAnnot) [!scanAnnot$duplicated,]

> princomp$scanID <- as.factor(samples.nodup$scanID)

> princomp$case.ctrl.status <- as.factor(samples.nodup$status)
> princomp$race <- as.factor(samples.nodup$race)

e The code below gives what percent of variation is accounted for by the principal component
for the first 32 PCs. It is clear to see the first two eigenvectors hold the largest percentage
of variance among the population, although the total variance accounted for is still less the
one-quarter of the total.

> pc.percent <- 100 * pca$eigenval[1:32]/sum(pca$eigenval)
> pc.percent

[1] 17.8731497 4.0574681 3.9585417 3.8104927 3.6380240 3.6258353
[7] 3.5497928 3.4758859 3.3797425 3.2797279 3.2434189 3.0479071
[13] 2.9600071 2.5249894 2.4476519 2.3350368 2.2863042 2.2264246
[19] 2.1647080 2.1281596 2.0644437 1.9390781 1.9332345 1.8964952
[25] 1.8668741 1.8247075 1.7828902 1.7547660 1.0881429 0.7167384
[31] 0.6979683 0.6716671

> 1bls <- paste("EV", 1:3, "\n", format(pc.percent[1:3], digits=2), "J", sep="")
> table(samples.nodup$status)

0 1
21 21

> cols <- rep(NA, nrow(samples.nodup))
> cols[samples.nodup$status == 1] <- "green"
> cols[samples.nodup$status 0] <- "red"

e Plot the principal component pairs for the first three PCs, by case-control status.

e Do boxplots for the first few PCs to show differences between cases and controls, along with
a two-factor ANOVA accounting for case-control status and population group. Since we
are using randomized case-control status, we do not expect to see a significant difference in
principal components between cases and controls, when considering population group.

69

> pairs(pca$eigenvect[,1:3], col=cols, labels=1lbls,
+ main = "First Three EVs by Case-Control Status")

First Three EVs by Case—Control Status

-0.2 0.0 0.2 0.4
1 1 1 1
°°W'$ P oL ° o ©F » % o -
I o
EV1 =
o
17.9% =
r O
|
0,0 o °
oo o o °° ® o ° o, o, °°o o ° ° | gl
<
3
~ e o
S
® . EV2 e C
o o
o o) o
g : 4.1% Fny
° @ ° 00’0 ®
N 0° ° o
P
1 o o
o o
o o L @
o
° ° ° o
° % 00 o B
.
° . b, o ° EV3 =
% ° °
° o ° |
) o o ° 4.0% -~
° ° ° ° 4
r O
;3 o |
° ° I~
° ° ° ° | @
T T T T T T T T T T ?
-0.2 -0.1 0.0 0.1 -0.3 -0.1 0.1 0.3

Figure 21: The values from the first three eigenvectors plotted for each sample, color coded by
case-control status. Green denotes case status and red indicates a control.

> aov.pl <- aov(princomp[,1] ~ princomp$race *
+ princomp$case.ctrl.status, princomp)
> summary (aov.pl)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.9647 0.9647 6137.368 <2e-16 **x*
princomp$case.ctrl.status 1 0.0000 0.0000 0.003 0.959
princomp$race:princomp$case.ctrl.status 1 0.0000 0.0000 0.149 0.702
Residuals 38 0.0060 0.0002

Signif. codes: 0 ‘“*xx’ 0.001 ‘*xx’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ *> 1

70

> boxplot (princomp[, 1] ~ princomp$case.ctrl.status,
+ ylab = "PC1", main = "PC1 vs. Case-control Status")

PC1 vs. Case—control Status

1
1
-
< _
o
o _
o
—
O
[a
=
=2
|
o
(Q\] T
S - °
I —_—
I
0 1

Figure 22: A boxplot of the values of the first eigenvector stratified by case-control status, where 0
indicates a control and 1 indicates a case.

1 observation deleted due to missingness

> aov.p2 <- aov(princomp[,2] ~ princomp$race *
+ princomp$case.ctrl.status, princomp)
> summary(aov.p2)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.0014 0.00140 0.058 0.811
princomp$case.ctrl.status 1 0.0171 0.01707 0.706 0.406
princomp$race:princomp$case.ctrl.status 1 0.0558 0.05582 2.308 0.137
Residuals 38 0.9191 0.02419

1 observation deleted due to missingness

71

> boxplot (princomp[, 2] ~ princomp$case.ctrl.status,
+ ylab = "PC2", main = "PC2 vs. Case-control Status")

PC2 vs. Case—control Status

o
U
o o
o
-
o :
o]
|
1
1
N 1 -
O : |
[a !
L]
o _|
o
1
! |
' 1
1
N ! :
S ! _
[:
1
1
—_—
I
0 1

Figure 23: A boxplot of the values of the second eigenvector stratified by case-control status, where
0 indicates a control and 1 indicates a case.

> aov.p3 <- aov(princomp[,3] ~ princomp$race *
+ princomp$case.ctrl.status, princomp)
> summary (aov.p3)

Df Sum Sq Mean Sq F value Pr(>F)

princomp$race 1 0.0000 0.00000 0.000 0.998
princomp$case.ctrl.status 1 0.0361 0.03610 1.496 0.229
princomp3$race:princomp$case.ctrl.status 1 0.0123 0.01233 0.511 0.479
Residuals 38 0.9170 0.02413

1 observation deleted due to missingness

72

> boxplot (princomp[, 3] ~ princomp$case.ctrl.status,
+ ylab = "PC3", main = "PC3 vs. Case-control Status")

PC3 vs. Case—control Status

0.2

0.1

PC3
0.0
l

Figure 24: A boxplot of the values of the third eigenvector stratified by case-control status, where
0 indicates a control and 1 indicates a case.

6.2 Missing Call Rate Differences

This step determines whether there are differences in missing call rates between cases and controls.
As in section 6.1, we use simulated case-control status to demonstrate this step, since the HapMap
IT data does not contain information on cases and controls.

e Investigate the difference in mean missing call rate by case-control status, using the sample
annotation variable missing.el. Here, since the case-control status was randomly assigned,
we do not expect to see a difference in any of the missing call rates with respect to case-control
status.

73

> Im.all <- Im(scanAnnot$missing.el ~ scanAnnot$status)
> summary(aov(lm.all))

Df Sum Sq Mean Sq F value Pr(>F)
scanAnnot$status 1 0.000129 0.0001288 0.527 0.472
Residuals 41 0.010015 0.0002443
4 observations deleted due to missingness

> boxplot (scanAnnot$missing.el ~ scanAnnot$status, ylab =
+ "Mean missing call rate", main="Mean missing call rate by case status")

Mean missing call rate by case status

- .
1
1
- . '
1
(s0)
o
o
[¢]
-
©
S
c
e o\
o O 4
£ o
)
L
1S
c
@
[}
= o
o
o
T [
o - -
o 4
© I I
0 1

Figure 25: A boxplot showing the mean missing call rate stratified by case-control status, where 0
indicates a control and 1 indicates a case.

74

7 Chromosome Anomaly Detection

This step looks for large chromosomal anomalies that may be filtered out during the final analysis.

7.1 B Allele Frequency filtering

e Create an IntensityData object and a GenotypeData object.

vV VVVVVVVVVVYV

library(GWASTools)

library (GWASdata)

data(illumina_scan_annot)

scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
data(illumina_snp_annot)

snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)

blData <- IntensityData(blnc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader (genofile)

genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

e Identify some low quality samples by looking at the standard deviation of BAF.

>
>
>

baf.sd <- sdByScanChromWindow(blData, genoData, var="BAlleleFreq")
med.baf.sd <- medianSdOverAutosomes (baf.sd)
low.qual.ids <- med.baf.sd$scanID[med.baf.sd$med.sd > 0.05]

e Decide which SNPs to exclude based on genome build.

>

chrom <- snpAnnot$chromosome

> pos <- snpAnnot$position

>
>
+

+ + + + + + + + + + + + 4+

build <- getAttribute(blnc, attname="genome_build")
if (build == 36) {
data(HLA.hg18)
hla <- chrom == 6 & pos >= HLA.hgl8$%start.base & pos <= HLA.hg18%end.base
data (pseudoautosomal.hg18)
xtr <- chrom == 23 & pos >= pseudoautosomal.hgl8["X.XTR", "start.base"] &
pos <= pseudoautosomal.hgl8["X.XTR", "end.base"]
data(centromeres.hgl8)
centromeres <- centromeres.hgl8
} else if (build == 37) {
data(HLA.hg19)
hla <- chrom == 6 & pos >= HLA.hgl9$%start.base & pos <= HLA.hgl19%end.base
data(pseudoautosomal.hgl19)
xtr <- chrom == 23 & pos >= pseudoautosomal.hgl9["X.XTR", "start.base"] &
pos <= pseudoautosomal.hgl9["X.XTR", "end.base"]
data(centromeres.hg19)

75

centromeres <- centromeres.hgl9
}
ignore <- snpAnnot$missing.nl == 1 #ignore includes intensity-only and failed snps
snp.exclude <- ignore | hla | xtr
snp.ok <- snpAnnot$snpID[!snp.exclude]

vV V.V + +

e We use circular binary segmentation to find change points in B Allele Frequency (BAF).

> scan.ids <- scanAnnot$scanID[1:10]

> chrom.ids <- 21:23

> baf.seg <- anomSegmentBAF(blData, genoData, scan.ids=scan.ids,
+ chrom.ids=chrom.ids, snp.ids=snp.ok, verbose=FALSE)

> head(baf.seg)

scanID chromosome left.index right.index num.mark seg.mean

1 280 21 4 998 294 0.1669
2 280 22 1009 2000 302 0.1524
3 280 23 2020 2987 297 0.1587
4 281 21 4 998 293 0.1516
5 281 22 1009 2000 301 0.1410
6 281 23 2020 2987 297 0.1452

e Filter segments to detect anomalies, treating the low quality samples differently.

> baf.anom <- anomFilterBAF(blData, genoData, segments=baf.seg,

+ snp.ids=snp.ok, centromere=centromeres, low.qual.ids=low.qual.ids,
+ verbose=FALSE)

> names (baf.anom)

(1] "raw" "filtered" "base.info" "seg.info"

> baf.filt <- baf.anom$filtered
> head(baf.filt)

scanID chromosome left.index right.index num.mark seg.mean sd.fac sex

19 286 22 1154 1163 10 0.401500 2.813941 M

23 287 22 1154 1163 10 0.371368 2.429629 M
merge homodel.adjust left.base right.base frac.used

19 FALSE FALSE 21110596 21276825 1

23 FALSE TRUE 21110596 21276825 1

7.2 Loss of Heterozygosity

e We look for Loss of Heterozygosity (LOH) anomalies by identifying homozygous runs with
change in LogRRatio. Change points in LogRRatio are found by circular binary segmentation.
Known anomalies from the BAF detection are excluded.

76

> loh.anom <- anomDetectLOH(blData, genoData, scan.ids=scan.ids,
+ chrom.ids=chrom.ids, snp.ids=snp.ok, known.anoms=baf.filt,

+ verbose=FALSE)

> names (1oh.anom)

(1] "raw" "raw.adjusted" "filtered" "base.info" "segments"
[6] "merge"

> loh.filt <- loh.anom$filtered
> head(loh.filt)

NULL

Statistics

Calculate statistics for the anomalous segments found with the BAF and LOH methods.

> # create required data frame
> baf.filt$method <- "BAF"
> if (!is.null(loh.filt)) {
+ loh.filt$method <- "LOH"
+ cols <- intersect(names(baf.filt), names(loh.filt))
+ anoms <- rbind(baf.filt[,cols], loh.filt[,cols])
+ } else {
+ anoms <- baf.filt
+ }
> anoms$anom.id <- 1:nrow(anoms)
> stats <- anomSegStats(blData, genoData, snp.ids=snp.ok, anom=anoms,
+ centromere=centromeres)
> names (stats)
[1] "scanID" "chromosome"
[3] "left.index" "right.index"
(5] "num.mark" "seg.mean"
[7] "sd.fac" "sex"
[9] "merge" "homodel.adjust"
[11] "left.base" "right.base"
[13] "frac.used" "method"
[15] "anom.id" "nmark.all"
[17] "nmark.elig" "nbase"
[19] "non.anom.baf.med" "non.anom.lrr.med"
[21] "non.anom.lrr.mad" "anom.baf .dev.med"
[23] "anom.baf.dev.5" "anom.baf.dev.mean"
[25] "anom.baf.sd" "anom.baf .mad"
[27] "anom.lrr.med" "anom.lrr.sd"
[29] "anom.lrr.mad" "nmark.baf"
[31] "nmark.lrr" "cent.rel"

77

[33] "left.most" "right.most"

[36] "left.last.elig" "right.last.elig"

[37] "left.term.lrr.med" "right.term.lrr.med"

[39] "left.term.lrr.n" "right.term.lrr.n"

[41] "cent.span.left.elig.n" "cent.span.right.elig.n"
[43] "cent.span.left.bases" "cent.span.right.bases"
[45] "cent.span.left.index" "cent.span.right.index"
[47] "bafmetric.anom.mean" "bafmetric.non.anom.mean"
[49] "bafmetric.non.anom.sd" "nmark.lrr.low"

Plot the anomalies with relevant statistics, one anomaly per plot. Each plot has two parts:
upper part is a graph of LRR and lower part is a graph of BAF.

> snp.not.ok <- snpAnnot$snpID[snp.exclude]

> anomStatsPlot (blData, genoData, anom.stats=stats[1,],
+ snp.ineligible=snp.not.ok, centromere=centromeres)

anom 1 - snum 286 — chrom 22 -— M - BAF

LRR
2

I I I I I
20.5 21.0 215 22.0

position (Mb)
red=AA, green=AB, blue=BB, pink=ineligible, black=other missing

horiz solid red = non—anom median, horiz dashed red =anom median

- ° ° ° ° ° o° ° o @ 050 ° °

— 00 o @ © 0o o oco0o - o oo o

I I I I
20.5 21.0 215 22.0

BAF
00 04 038

position (Mb)

78

7.4 Identify low quality samples

e To identify low quality samples, one measure we use is the standard deviation of BAF and
LRR. BAF results were found previously, now we find results for LRR. Unlike for BAF, all
genotypes are included.

> 1lrr.sd <- sdByScanChromWindow(blData, var="LogRRatio", incl.hom=TRUE)
> med.lrr.sd <- medianSdOverAutosomes(lrr.sd)

e We also need the number of segments found using circular binary segmentation in anomaly
detection.

> baf.seg.info <- baf.anom$seg.info
> loh.seg.info <- loh.anom$base.info[,c("scanID", "chromosome", "num.segs")]

e We identify low quality samples separately for BAF and LOH, using different threshold pa-
rameters. A SnpAnnotationDataFrame with an “eligible” column is required. BAF detected
anomalies for low quality BAF samples tend to have higher false positive rate. LOH detected
anomalies for low quality LOH samples tend to have higher false positive rate.

> snpAnnot$eligible <- !snp.exclude

> baf.low.qual <- anomIdentifyLowQuality(snpAnnot, med.baf.sd, baf.seg.info,
+ sd.thresh=0.1, sng.seg.thresh=0.0008, auto.seg.thresh=0.0001)

> 1oh.low.qual <- anomIdentifyLowQuality(snpAnnot, med.lrr.sd, loh.seg.info,
+ sd.thresh=0.25, sng.seg.thresh=0.0048, auto.seg.thresh=0.0006)

e Close the IntensityData and GenotypeData objects.
> close(blData)

[[1]1]
[1] 65536

> close(genoData)

[[11]
[1] 131072

79

8 SNP Quality Checks

This step finds SNPs that may not be suitable for use in GWAS studies due to genotyping artifacts.
Three methods are used to look at the genotyping error rates for each SNP: duplicate sample
discordance, Mendelian error rates and deviation from Hardy-Weinberg equilibrium.

8.1 Duplicate Sample Discordance

This step calculates the discordance of genotype calls between samples that are duplicates. Geno-
type discordance is evaluated by comparing the genotypes of samples that were genotyped more
than once. We can examine the discordance rate with respect to samples or with regard to SNPs.
The discordance rate for a pair of samples is the fraction of genotype calls that differ over all SNPs
for which both calls are non-missing. The discordance rate for a SNP is the number of calls that
differ divided by the number of duplicate pairs in which both calls are non-missing.

e Keep the samples with a low enough value for the missing call rate, missing.el. The thresh-
old chosen here is 0.05.

library(GWASTools)

library(GWASdata)

data(affy_scan_annot)

scanAnnot <- ScanAnnotationDataFrame (affy_scan_annot)
scan.excl <- scanAnnot$scanID[scanAnnot$missing.el >= 0.05]
length(scan.excl)

V V.V Vv Vv VvV

(11 0

e We make a vector of SNP snpIDs with missing.n1 = 1 to exclude from the comparison. We
then call the duplicateDiscordance function and save the output file. This function finds
subjectIDs for which there is more than one scanlD. To look at the discordance results, we
will calculate the percentage value and look at the summary of the values for each of the
duplicate pairs. We will plot the rates color coded by continental ancestry, since experience
has shown the values often differ based upon the population group.

> data(affy_snp_annot)

> snpAnnot <- SnpAnnotationDataFrame (affy_snp_annot)
> snp.excl <- snpAnnot$snpID[snpAnnot$missing.nl == 1]
> length(snp.excl)

(11 0

> genofile <- system.file("extdata", "affy_geno.nc",

+ package="GWASdata")

> genoNC <- NcdfGenotypeReader (genofile)

> genoData <- GenotypeData(genoNC, snpAnnot=snpAnnot, scanAnnot=scanAnnot)
> dupdisc <- duplicateDiscordance(genoData, subjName.col="subjectID",

+ scan.exclude=scan.excl, snp.exclude=snp.excl)

> names (dupdisc)

80

[1] "discordance.by.snp" "discordance.by.subject" "correlation.by.subject"
> head(dupdisc$discordance.by.snp)

snplID discordant npair n.disc.subj discord.rate

1 869828 0 4 0 0
2 869844 0 4 0 0
3 869864 0 4 0 0
4 869889 0 4 0 0
5 869922 0 4 0 0
6 869925 0 4 0 0

> length(dupdisc$discordance.by.subject)
(1] 4
> dupdisc$discordance.by.subject[[1]]

106 107
106 0.000000000 0.001258653
107 0.001258653 0.000000000

> # each entry is a 2x2 matrix, but only one value of each
> # is important since these are all pairs

> npair <- length(dupdisc$discordance.by.subject)

> disc.subj <- rep(NA, npair)

> subjID <- rep(NA, npair)

> race <- rep(NA, npair)

> for (i in 1:mpair) {

+ disc.subj[i] <- dupdisc$discordance.by.subject[[i]][1,2]
+ subjID[i] <- names(dupdisc$discordance.by.subject) [i]

+ race[i] <- scanAnnot$race[scanAnnot$subjectID == subjID[i]][1]
+

> dat <- data.frame(subjID=subjID, disc=disc.subj, pop=race,
+ stringsAsFactors=FALSE)

> summary(dat$disc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0003150 0.0005348 0.0007605 0.0007737 0.0009994 0.0012590
> # Assign colors for the duplicate samples based on population group.
> dat$col <- NA
> dat$col[dat$pop == "CEU"] <- "black"
> dat$col[dat$pop == "YRI"] <- "red"
> table(dat$col, exclude=NULL)

black red <NA>
3 1 0

81

> dat <- dat[order(dat$disc),]
> dat$rank <- 1:npair

> # Plot the sample discordance rates color coded by ethnicity.
> plot(dat$disc, dat$rank,
+ xlab="Discordance rate between duplicate samples",
ylab="rank", col=dat$col,
main="Duplicate Sample Discordance by Continental Ancestry")
legend("topleft", unique(dat$pop),
pch=rep(1,2), col=unique(dat$col))

+ Vv + +

Duplicate Sample Discordance by Continental Ancestry

o
< | o CEU °
o YRI

rank
2.0 2.5 3.0 35
|

15

1.0

I I I I I
0.0004 0.0006 0.0008 0.0010 0.0012

Discordance rate between duplicate samples

Figure 26: The discordance for duplicate samples plotted in increasing values, color coded by
population group.

82

8.2 Mendelian Error Checking

This step calculates and examines the Mendelian error rates. Mendelian errors are detected in
parent-offspring trios or pairs as offspring genotypes that are inconsistent with Mendelian inheri-
tance. We use the mendelErr function to calculate a Mendelian error rate per SNP. Lastly some
checks are done on Mendelian error rates per family.

e To call the Mendelian error checking function, we first must create a mendelList object.
We will call mendellist that creates a list of trios, checking for any gender inconsistencies
among annotated father and mother samples. Then, mendelListAsDataFrame puts this list
into a data frame for easier checking. Finally, we can call the mendelErr function to find the
Mendelian errors for SNPs with missing.n1 less than 0.05.

> men.list <- mendelList(scanAnnot$family, scanAnnot$subjectID,
+ scanAnnot$father, scanAnnot$mother, scanAnnot$sex,

+ scanAnnot$scanlID)

> res <- mendellListAsDataFrame (men.list)

> head(res)

offspring father mother
138 127 101
151 160 103
214 50 15
272 237 191
272 263 191
239 28 3

O O W N

> dim(res)
[1] 18 3

> # Only want to use SNPs with missing.nl < 0.05
> snp.excl <- snpAnnot$snpID[snpAnnot$missing.nl >= 0.05]
> length(snp.excl)

[1] 50

> mend <- mendelErr(genoData, men.list, snp.exclude=snp.excl)
> names (mend)

[1] "trios" "all.trios" "snp"
> head (mend$trios)

fam.id <child.id Men.err.cnt Men.cnt mtDNA.err mtDNA.cnt chrl chr2 chr3 chr4

1 4 200047857 0 3147 0 100 0 0 0 0
2 5 200102386 7 3132 0 99 0 0 0 0
3 9 200066330 3 3146 1 99 0 0 0 0

83

4 12 200013233 1 3139 0 100 0 0 0

5 28 200034659 5 3136 0 100 0 0] 0

6 1334 200016815 2 3145 0 100 0 0 0
chrb5 chr6 chr7 chr8 chr9 chr10 chrll chrl2 chri13 chri14 chrlb5 chri16 chril7

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0
chr18 chr19 chr20 chr21 chr22 chrX chrXY chrY

1 0 0 0 0 0 0 0 0

2 0 0 0 3 2 2 0 0

3 0 0 0 2 1 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 2 2 1 0 0

6 0 0 0 0 2 0 0 0

> names (mend$snp)

[1] "check.cnt" "error.cnt"

Mendelian Errors per SNP

e The Mendelian error rate is calculated for each SNP by dividing the number of errors per
SNP for all trios by the number of trios used in the error checking. We expect to get some
NA values in this calculation for those probes for which there were no valid trios to check for
errors, causing the rate to have a denominator of zero.

> # Calculate the error rate
> err <- mendsnperror.cnt / mendsnpcheck.cnt
> table(err == 0, exclude=NULL)

FALSE TRUE <NA>
31 3219 0

e We will plot the error rate per SNP as calculated above, sorting the values by increasing rate.

e Next we will look at the Mendelian error rates among the trios we have in the HapMap data.
Looking at the summary of the number of families with at least one error over all SNPs, we
can see that the maximum number of errors per SNP. Next, we can look at subsets of SNPs
with greater than 0, 1 and 2 errors per SNP. Finally, for those SNPs that have valid trios to
detect errors, we get the fraction of SNPs with no errors.

> fam <- mendsnperror.cnt

> n <- mendsnpcheck.cnt

> fam[is.na(err)] <- NA

> table(is.na(fam), exclude=NULL)

84

> plot(err, rank(err), xlab="Error Rate (fraction)",
+ ylab="rank", main="Mendelian Error Rate per SNP, ranked")

Mendelian Error Rate per SNP, ranked

) [o] o o
o
o _|
o
™
o
o _|
: R
5]
o
o _|
o
(Q\
I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10

Error Rate (fraction)

Figure 27: A plot of the Mendelian error rate per SNP, ranked in increasing order.

FALSE <NA>
3250 0

> summary (fam)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.000000 0.009538 0.000000 1.000000

> # SNPs with errors
> length(fam[n > 0 & fam > 0])

(1] 31

85

> # SNPs for which more than one family has an error
> length(fam[n > 0 & fam > 1])

(11 0

> length(fam[n > 0 & fam > 2])

[1]1 ©

> # Get the SNPs with valid trios for error detection
> val <- length(fam[n > 0])

> noerr <- length(fam[n > 0 & fam == 0])

> # Divide to get fraction with no errors

> noerr / val

[1] 0.9904615

A new version of the SNP annotation table will be saved with the Mendelian error values
included. The number of families with at least one error per SNP, mendsnperror.cnt, gets
saved as mendel .err.count. The number of valid families for checking, mendsnpcheck. cnt,
gets saved as mendel.err.sampsize.

> # Write the error rates to the SNP table

> snp.sel <- match(names (mendsnperror.cnt), snpAnnot$snpID)
> snpAnnot$mendel.err.count [snp.sel] <- mendsnperror.cnt

> snpAnnot$mendel . err.sampsize[snp.sel] <- mendsnpcheck.cnt
> allequal (snpAnnot$snpID, sort(snpAnnot$snpID))

(1] TRUE

> # The high number of NA values is due to the filtering out of SNPs
> # before the Mendelian error rate calculation
> sum(is.na(snpAnnot$mendel.err.count))

[1] 50
> sum(is.na(snpAnnot$mendel.err.sampsize))
[1] 50

Save the updated SNP annotation table with
the new Mendelian error data
varMetadata (snpAnnot) ["mendel.err.count"”, "labelDescription"] <-
paste ("number of Mendelian errors detected in trios averaged over",
"multiple combinations of replicate genotyping instances")
varMetadata (snpAnnot) ["mendel. err.sampsize", "labelDescription"] <-
"number of opportunities to detect Mendelian error in trios"

+ VvV + + Vv vV

86

e To further investigate SNPs with a high Mendelian error rate, we will make a cluster plot for
3 SNPs with the highest Mendelian error rate. We expect the plots to lack defined genotype
clusters, leading to a poor call rate. For this example, we will plot the top 3 SNPs using the
function genoClusterPlotByBatch.

VV+V+VVVVYV + YV VYV +V VYV

Get a vector of SNPs to check
snp <- pData(snpAnnot)
snp$err.rate <- snp$mendel.err.count /
snp$mendel . err.sampsize
snp <- snplorder (snp$err.rate, decreasing=TRUE),]
snp <- smnp[1:3,]
xyfile <- system.file("extdata", "affy_gxy.nc",
package="GWASdata")
xyNC <- NcdfIntensityReader (xyfile)
xyData <- IntensityData(xyNC, snpAnnot=snpAnnot, scanAnnot=scanAnnot)
pdf (file="DataCleaning-mendel.pdf")
par (mfrow = c¢(3,3))
mtxt <- paste("SNP", snp$rsID, "\nMendelian Error Rate",
format (snp$err.rate, digits=5))
genoClusterPlotByBatch(xyData, genoData, snpID=snp$snpID, main.txt=mtxt,
plot.type="XY", batchVar="plate", cex.main=0.9)
dev.off ()
close(xyData)

Mendelian Errors per Family

e This section does some analyses on the Mendelian Errors for each family (trio). The variable
all.trios contains results of all combinations of duplicate samples. The variable trios
contains the averages of unique trios (averages of duplicates from all.trios).

> # Calculate the fraction of SNPs with an error for each trio
> trios <- mend$trios

> trios$Mend.err <- trios$Men.err.cnt/trios$Men.cnt

> summary(trios$Mend.err)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0002026 0.0004820 0.0006509 0.0009536 0.0022350
> # Start by pulling out the vectors needed from “trios'
> tmp <- trios[, c("fam.id", "Mend.err")]; dim(tmp)

(1] 14 2

> # Change fam.id to match the sample annotation column name
> names (tmp) <- c("family", "Mend.err.rate.fam")

> # Merge the variables into the sample annotation file

87

SNP rs7067512 SNP rs7067512 SNP rs7067512

Mendelian Error Rate 0.100000 Mendelian Error Rate 0.100000 Mendelian Error Rate 0.100000
GAINmixHapMapAffy2 GAINmixHapMapAffyl o GAINmixHapMapAffy3
o S
o 1 o o o ° N o
E] & = e o
— - — o
3 ° B o0
-1 o
@ s -
> . > 8 4 > ®©
o ® °
g] - . i
4 x . 0%, S oxe .
g Ix x E S . S —xx xX . g 7 o oo
o X < o X
~ T T T T T T T T T T T T T T T T
800 1000 1200 800 1000 1200 1400 700 900 1100 1300
X X X
SNP rs5961221 SNP rs5961221 SNP rs5961221
Mendelian Error Rate 0.083333 Mendelian Error Rate 0.083333 Mendelian Error Rate 0.083333
GAINmixHapMapAffy2 GAINmixHapMapAffyl GAINmixHapMapAffy3
o
S I : o
o |- o s 4
- . . § . 5]
°
o & 1 o o
S o
> 8 . © L. ° > g | o > 2,
® e -1 °
e o - o g o ¥ °
o o ™ 8o % R
& T g o]
° o °
T T T T T T T T T T T T 8 T T T T T T T
500 600 700 800 550 650 750 850 400 500 600 700
X X X
SNP rs3134562 SNP rs3134562 SNP rs3134562
Mendelian Error Rate 0.083333 Mendelian Error Rate 0.083333 Mendelian Error Rate 0.083333
GAINmixHapMapAffy2 GAINmixHapMapAffyl GAINmixHapMapAffy3
=3 o
- ° 8] 0 S o oo
s o wee S . S A
s | o Qo ° ~ ° o °° — o o o
o — %00 o — 000
S ° ° % o
— o o
> N > S ° > S
8 | @© ° @©
S - -
© o
- § | 8 _
§ 1. - I [kx ol
39 T T T T T T T T T T T T T T T T T T
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000
X X X

Figure 28: Cluster plots of the 3 SNPs with the highest Mendelian error rate. Blue indicates a
sample with a “BB” genotype, green is an “AB” genotype and red is an “AA” genotype. The black
X marks indicate a sample with a missing genotype for that SNP. All of these cluster plots are
clearly problematic with regard to the genotype clusters and the called genotypes.

scanAnnot$mend.err.rate.fam <- NA

for(i in 1:nrow(tmp))

{
ind <- which(is.element (scanAnnot$family,tmp$family[i]))
scanAnnot$mend.err.rate.fam[ind] <- tmp$Mend.err.rate.fam[i]

}

allequal (scanAnnot$scanID, sort(scanAnnot$scanID))

V + + + + VvV

[1] TRUE

88

> head(scanAnnot$mend.err.rate.fam)

[1] 0.0015943878 0.0001639344 NA 0.0009535919 0.0009535919
[6] 0.0015943878

> varMetadata(scanAnnot) ["mend.err.rate.fam", "labelDescription"] <-
+ "Mendelian error rate per family"

e The Mendelian error rate per family, broken up by continental ancestry, could illuminate
issues with SNPs that may not be accurately called across all ethnicities for the minor allele.
We will plot the Mendelian error rate per family, color coded by population group. The error
rates are higher for the YRI families as a whole, which is expected due to the higher level of
genetic diversity.

Get the families that have non-NA values for the family

Mendelian error rate

fams <- pData(scanAnnot)[!is.na(scanAnnot$mend.err.rate.fam) &
!duplicated(scanAnnot$family), c("family",
"mend.err.rate.fam", "race")]

dim(fams)

vV + + Vv Vv Vv

[1] 12 3
> table(fams$race, exclude=NULL)

CEU YRI <NA>
7 5 0

> # Assign colors for the different ethnicities in these families
> pcol <- rep(NA, nrow(fams))

> pcol[fams$race == "CEU"] <- "black"

> pcol[fams$race == "YRI"] <- "red"

8.3 Hardy-Weinberg Equilibrium Testing

This section uses Fisher’s exact test to examine each SNP for departure from Hardy-Weinberg
Equilibrium. For each SNP, p-values are obtained; those SNPs with extremely low values will
be considered for filtering. QQ-plots of the p-values are made for both the autosomes and X
chromosome.

e To run the Hardy-Weinberg test, we will filter out duplicates and non-founders. We will run
gwasExactHW for the samples with European continental ancestry only, although the process
is just the same for all population groups. This function filters out the males for the X
chromosome and all samples for the Y and mitochondrial probes. Note that an optional
argument to gwasExactHW is a a scan by chromosome by filter matrix, to exclude scan-
chromosome combinations with aneuploidy.

89

plot (fams$mend.err.rate.fam*100, rank(fams$mend.err.rate.fam),
main="Mendelian Error rate per Family, ranked",

ylab="rank", col=pcol)
legend("bottomright", c("CEU", "YRI"),

>
+
+ xlab="Mendelian error rate per family (percent)",
+
>
+ pch=c(1,1), col=c("black", "red"))

Mendelian Error rate per Family, ranked

S‘ | o
o
© 4 o
—
w pa—
4 o
c
e
O — o
< [
o
o — o CEU
o o YRI
I I I I I
0.00 0.05 0.10 0.15 0.20

Mendelian error rate per family (percent)

Figure 29: A plot of the Mendelian error rate for families, ranked in order of increasing rate.
The black indicates a family with CEU continental ancestry and red indicates a family with YRI
ancestry.

> head(pData(scanAnnot) [,c("father", "mother")])

father mother

3 0 0
5 0 0
14 0 0

90

15 0 0

17 0 0

28 0 0

> nonfounders <- scanAnnot$father != 0 &
+ scanAnnot$mother != 0

> table(nonfounders)

nonfounders
FALSE TRUE
33 14
> scan.excl <- scanAnnot$scanID[scanAnnot$race != "CEU" |
+ nonfounders | scanAnnot$duplicated]

> length(scan.excl)
[1] 30

> hwe <- gwasExactHW(genoData, scan.exclude=scan.excl)
> close(genoData)

[[1]1]
[1] 65536

We will examine the CEU population data for the purposes of the tutorial. The remaining
population groups and their results are analyzed in exactly the same manner.

We will look at the values calculated from the function call to gwasExactHW, which include p-
values, minor allele frequency, and genotype counts for each SNP on each of the chromosome
types. All the p-values are missing for the Y and M chromosomes. There are minor allele
frequencies on the same chromosome types; we look at the first 50 values. Finally, there are

genotype counts for all chromosome types, which are stored as nAA, nAB and nBB.

> names (hwe)

[1] "snpID" "chromosome" "position" "nAA"
[6] "nBB" "MAF" "minor.allele" "f"
> dim(hwe)

[1] 3300 10

> # Check on sample sizes for autosomes and X chromosome
> hwe$N <- hwe$nAA + hwe$nAB + hwe$nBB
> summary (hwe$N[is.element (hwe$chromosome,1:22)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
13.00 17.00 17.00 16.95 17.00 17.00

91

llnABll
"p.value"

> summary (hwe$N[is.element (hwe$chromosome,23)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 8.000 8.000 7.963 8.000 8.000

> hwe$p.value[1:10]

[1] 1.0000000 NA 1.0000000 1.0000000 1.0000000 0.5372636 0.1788856
[8] 1.0000000 1.0000000 1.0000000

> sum(is.na(hwe$p.value[hwe$chromosome == 24])) # XY
(1] 4

> sum(is.na(hwe$p.value[hwe$chromosome == 23])) # X
[1] 264

> hwe$MAF[1:10]

[1] 0.05882353 0.00000000 0.11764706 0.26470588 0.05882353 0.20588235
[7] 0.11764706 0.23529412 0.35294118 0.35294118

> hwe([1:3, c("nAA", "nAB", "nBB")]

nAA nAB nBB
869828 0 2 15
869844 17 0 0
869864 13 4 0

Next we want to estimate the inbreeding coefficient per SNP calculated using the minor
allele frequencies and the total sample number count. A histogram shows the distribution is
centered around 0, which indicates there is most likely no significant population substructure.

> summary (hwe$f)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-0.7778 -0.2000 -0.0667 -0.0412 0.1005 1.0000 682.0000

> # Check the MAF of those SNPs with f=1
> chkf <- hwe[!is.na(hwe$f) & hwe$f==1,]; dim(chkf)

(1] 12 11
> summary (chkf$MAF)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05882 0.05882 0.06066 0.10750 0.12500 0.25000

92

> hist (hwe$f, main="Histogram of the Inbreeding Coefficient
+ For CEU Samples", xlab="Inbreeding Coefficient")

Histogram of the Inbreeding Coefficient
For CEU Samples

o
o f—
O
>
e 8 4]
[} <
>
o
9 —
LL
o
o —
N —
o - —1
[I I I
-0.5 0.0 0.5 1.0

Inbreeding Coefficient

Figure 30: A histogram of the inbreeding coefficient values from running the Hardy-Weinberg
analysis for the unrelated CEU samples.

e To see at what value the SNPs begin to deviate from the Hardy-Weinberg expected values,
we will make QQ-plots that exclude SNPs where MAF = 0. Make a plot of the observed
p-values vs. the expected p-values for the autosomes and X chromosome separately by calling
the function qgqPlot.

> idx <- which(hwe$MAF == 0); length(idx)
[1] 481
> hwe.0 <- hwe[-idx,]; dim(hwe.O0)

[1] 2819 11

93

> # Check to makes sure that the correct number of SNPs were removed
> length(hwe$p.value) - length(hwe.O0$p.value)

[1] 481

> # Only keep the autosomal SNPs for first plot
> pval <- hwe.O$p.value[is.element (hwe.O$chromosome, 1:22)]
> length(pval)

[1] 1786

> pval <- pval[!is.na(pval)]
> length(pval)

[1] 1786

> # X chromosome SNPs for plot 2
> pval.x <- hwe.0$p.value[is.element (hwe.O$chromosome, 23)]
> length(pval.x)

[1] 737

> pval.x <- pval.x[!is.na(pval.x)]
> length(pval.x)

[1] 736

pdf (file = "DataCleaning-hwe.pdf")

par (mfrow=c(2,2))

qqPlot (pval=pval, truncate
main="Autosomes, all")

qqPlot (pval=pval, truncate = TRUE,
main="Autosomes, truncated")

qqPlot(pval=pval.x, truncate = FALSE,
main="X chromosome, all")

qqPlot (pval=pval.x, truncate = TRUE,
main="X chromosome, truncated")

dev.off ()

FALSE,

vV + Vv + Vv + VvV + Vv VvV

e We plot the p-values against MAF for all SNPs with MAF greater than zero.

94

Autosomes, all Autosomes, truncated

o _
N ocoo o © E o
8
3 |
o o o ™
0 . — R
s g
: ;o
s} v o
T ° S 4
° g
I | o
© T T T T T T T T T T T T T T
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
—log,o(expected P) —logo(expected P)
lambda =0 lambda =0
X chromosome, all X chromosome, truncated
° o o 0
Q
0 g
= S ¥
© oo —
QE-’ ° — 6'_: o -
% = - 3
= s S
E] C - aad) o o
D [Te) [%]
2 o -— % @0c0000 © ©
I # é 7 _-III9
o 8 o
o | o
I I I I I I I I I I I I
00 05 10 15 20 25 00 05 10 15 20 25
—logjo(expected P) —logyo(expected P)
lambda =0 lambda =0

Figure 31: Four QQ-plots showing the deviation of Hardy-Weinberg p-values for each SNP for the
samples from the CEU population group.

95

> plot (hwe.O$MAF, -logl0(hwe.O$p.value),
+ xlab="Minor Allele Frequency", ylab="-log(p-value)",
+ main="Minor Allele Frequency vs\nP-value")

Minor Allele Frequency vs

o
(V]
) ° o
o
° o
o
o
n | Q
—
° o
o
<)
[o °
]
~—~ e}
[} o
3 °
o
I> o | Oy o °
— o (]
o [}
N (e}
(@) o o @® o
i) o
| o o
° o o
o o o
ooo °
o0 | o o °
o o ® ° o
o
o
o o o
o o
0o® %o ° o
%0 00 5 o ®»® , o
(@)
o] ® @O0 00000000 O® 00O WO 00 00 ©00 O ® [o

I I I I I
0.1 0.2 0.3 0.4 0.5

Minor Allele Frequency

Figure 32: A plot of the p-value as a function of the minor allele frequency for SNPs for the CEU
samples, excluding the SNPs with a minor allele frequency equal to 0.

96

9 Preliminary Association Tests

The final step in the data cleaning process is to perform preliminary association tests. This step
creates and examines QQ, ‘Manhattan’ signal, regional association and genotype cluster plots. If
significant SNPs appear as a result of the association test, SNP cluster plots must be examined
to determine if the association is driven from a poorly clustering SNP. Note that HapMap data
do not come with phenotypic outcomes, thus, for purposes of the tutorial we use simulated binary
outcomes instead. The tests conducted are logistic regression based tests; the samples are filtered
by quality criteria and only unrelated subjects are included. In the code below we do not include
any covariates in the logistic regression as these data are not part of a case control study. For data
in the GENEVA project and other GWA studies we discuss which variables should be considered
for inclusion as covariates in the preliminary association tests. The determination is made by
analyzing a model including these covariates but without genotypes; covariates with significant
effects are then included in the final model.

9.1 Association Test

e To run the association test, we call the function assocTestRegression. For the tutorial, all
samples will be kept, but we would use the argument scan.exclude for those samples we wish
to filter out for the association test. Typically, we do not filter out SNPs for the association
test — we run all SNPs and then filter the results. The omission of filters may cause some
SNPs to return significant p-values for association.

> library(GWASTools)

> library(GWASdata)

> data(affy_scan_annot)

> scanAnnot <- ScanAnnotationDataFrame(affy;scan_annot)
> genofile <- system.file("extdata", "affy_geno.nc",

+ package="GWASdata")

> genoNC <- NcdfGenotypeReader (genofile)

> genoData <- GenotypeData(genoNC, scanAnnot=scanAnnot)
> assoc.file <- "assoc"

> assocTestRegression(genoData, outcome="status", covar.list=c(""),
+ ivar.list=c(""), model.type="logistic", robust=TRUE,
+ chromosome.set=c(24:26), outfile=assoc.file,)

After running the association test on the selected subset of SNPs and samples we must analyze
the results to determine if any probes with significant p-values are spurious or truly associated with
the phenotype of interest. Quantile-quantile, ‘Manhattan’ and SNP cluster plots will all be used to
further understand those probes with significant p-values.

9.2 QQ Plots

e To create QQ plots of the ordered p-values from the association tests versus the ordered
expected p-values, we first load the saved p-values data. Then, we will call ggPlot to plot the
Wald test p-values. Given that the samples were split randomly between cases and controls,
not surprisingly there are no outliers visible in the QQ plot in Figure 33.

97

9.3

9.4

> assoc <- getobj(paste(assoc.file,
+ ".model.l.additive.chr.24_26.RData", sep=""))
> names (assoc)

[1] "snpID" "MAF"

[3] "minor.allele" "model.1.additive.n"

[6] "model.l.additive.warningOrError" "model.l.additive.Est.G"

[7] "model.l.additive.SE.G" "model.1l.additive.OR.G"

[9] "model.l.additive.OR_L95.G" "model.1l.additive.0OR_U95.G"
[11] "model.l.additive.Stat.G" "model.1l.additive.pvalue.G"
[13] "model.1.nAA.ccO" "model.1.nAB.ccO"

[15] "model.1.nBB.ccO" "model.1.nAA.ccl"
[17] "model.1.nAB.ccl" "model.1.nBB.ccl"

“Manhattan” Plots of the P-Values

To create the ‘Manhattan’ plots, we will call the function manhattanPlot. We take the
negative log transformation of the p-values and plot them for each probe. See the resulting
plot in Figure 34.

> data(affy_snp_annot)

> snpAnnot <- SnpAnnotationDataFrame (affy_snp_annot)
> chrom <- getChromosome (snpAnnot)

> chrom.sel <- chrom 7in}, 24:26

SNP Cluster Plots

Next, we will create SNP cluster plots for the probes with significant p-values. It is important
to examine cluster plots of all top hits, as poor clusters not picked up by other quality checking
steps may still show up as having low p-values. We plot SNPs with the 9 most significant
p-values from the Likelihood Ratio test.

> # Identify SNPs with lowest p-values

> snp <- pData(snpAnnot) [chrom.sel, c("snpID", "rsID")]

> allequal (snp$snpID, assoc$snpID)

> snp$pval <- assoc$model.l.additive.pvalue.G

> snp <- snplorder (snp$pval),]

> snp <- snp[1:9,]

> xyfile <- system.file("extdata", "affy_qgxy.nc",

+ package="GWASdata")

> xyNC <- NcdfIntensityReader (xyfile)

> xyData <- IntensityData(xyNC, snpAnnot=snpAnnot, scanAnnot=scanAnnot)
> pdf (file="DataCleaning-cluster.pdf")

> par(mfrow = ¢(3,3))

> mtxt <- paste("SNP", snp$rsID, "\np =", format(snp$pval, digits=4))
> genoClusterPlot (xyData, genoData, snpID=snp$snpID, main.txt=mtxt,

98

> qqPlot (pval=assoc$model.1.additive.pvalue.G,
+ truncate=TRUE, main="QQ Plot of Wald Test p-values")

QQ Plot of Wald Test p—values

29900 AAYAVAVAVANVANIANIIVANEERIAN A
q-_
)
e o
o]
g ™ -
o
S
=
I
—~
o
)
2 «
f—
0]
®
o
o
N
o
—
>
<]
2 -
o

I I I I I
0.0 0.5 1.0 15 2.0

—log,q(expected P)
lambda = 2.338

Figure 33: QQ plot of Wald statistic p-values for association test.

+ plot.type="XY")
> dev.off()

> close(xyData)

> close(genoData)

The cluster plots in Figure 35 show that some of the SNPs have poor cluster plots, indcating
genotyping artifact. In a real association study, the evidence from such SNPs would be discounted.

99

> manhattanPlot (assoc$model.1.additive.pvalue.G,

+
+

chromosome=chrom[chrom.sel],
chrom.labels=c("XY","Y","M"))

A A A A A AMAMAALA AL A
r % r % r % r % r % AR S Y
Lo p—
Lr) p—
<t —
~
o
N
S .
(@)
S ™
|
.
L] . Y
N 1 L]
. L] L]
M .
R P T v Dok .
. - I :
- .- - s
o - L e .
| | |
>
x s =
Chromosome

Figure 34: “Manhattan” plot of Wald statistic p-values for association test.

100

3000 5000

1000

1500 2500

500

1500

500

SNP rs28358581
p = 2.820e-226

890

%

° % §o apoo

2000 4000 6000 8000

X

SNP rs28359173
p = 2.820e-226

o®

Foalo
T T

® ofs? B, o

500

0o o oo
T

1500

T
2500

X

3500

SNP rs16980558
p =9.974e-205

e

LY

xX &

ZXHX

o o
o ©
°

)

o

o

°

°

400

T
800

T
1200

X

T
1600

1000 3000 5000

4000

1000

3500 4500

2500

S

00° ©

% oo§:
]

SNP rs28358874
p = 2.820e-226

o

o omoﬂlm‘hsg’gﬁgo
T T T T T
1000 3000 5000
X

SNP rs28357375

p = 2.820e-226
o, o, 8P 080
T T T

T T T T T
1000 3000 5000 7000

X

SNP rs17842914
p = 1.432e-103

o

o

°
oS00

o

T T T T
1000 1500 2000 2500

X

10000

4000

0

3000

1000

2000 4000 6000

SNP rs28358883

p = 2.820e-226
° °
- o
@
—H o
7] %500 M?%Q
T T T T T
4000 8000 12000
X

SNP rs2853496
p =3.181e-222

8 ®oq

o

0 5000

10000

SNP rs28359172
p = 1.432e-103

)

[}
)

o

@ o O
T T T T T T T

1000 3000 5000 7000

X

Figure 35: Cluster plots of the 9 SNPs with smallest p-values.

101

10 Acknowledgements

This manual reflects the work of many people. In the first place the methods described were
developed and implemented by a team headed by Cathy Laurie. The team included David Crosslin,
Stephanie Gogarten, David Levine, Caitlin McHugh, Sarah Nelson, Jess Shen, Bruce Weir, Qi
Zhang and Xiuwen Zheng. Before any the work started, valuable advice was provided by Thomas
Lumley and Ken Rice. Preparation of the manual began with a team headed by Ian Painter and
Stephanie Gogarten. The team included Marshall Brown, Matthew Conomos, Patrick Danaher,
Kevin Rubenstein, Emily Weed and Leila Zelnick.

The data cleaning activities of the GENEVA Coordinating Center have been greatly helped by
the experience and advice from other participants in the GENEVA program: the genotyping centers
at CIDR and the Broad; the dbGaP group at the National Center for Biotechnology Information
(NCBI); and the many study investigators. Particular thanks to Kim Doheny and Elizabeth Pugh
at CIDR and Stacey Gabriel and Daniel Mirel at the Broad and Justin Paschall at NCBI.

Funding for the GENEVA project includes HG 004446 (PI: Bruce Weir) for the Coordinating
Center, U01 HG 004438 (PI: David Vallee) for CIDR, HG 004424 (PI: Stacey Gabriel) for the
Broad.

The continuing guidance of Dr. Teri Manolio of NHGRI is deeply appreciated.

102

	1 Overview
	2 Preparing Data
	2.1 Data formats used in GWASTools
	2.2 Creating the SNP Annotation Data Object
	2.3 Creating the Scan Annotation Data Object
	2.4 Creating the NetCDF Files

	3 Batch Quality Checks
	3.1 Calculate Missing Call Rate for Samples and SNPs
	3.2 Calculate Missing Call Rates by Batch
	3.3 Chi-Square Test of Allelic Frequency Differences in Batches

	4 Sample Quality Checks
	4.1 Sample genotype quality scores
	4.2 BAlleleFreq variance analysis
	4.3 Missingness and heterozygosity within samples

	5 Sample Identity Checks
	5.1 Mis-annotated Gender Check
	5.2 Relatedness and IBD Estimation
	5.3 Population Structure

	6 Case-Control Confounding
	6.1 Principal Components Differences
	6.2 Missing Call Rate Differences

	7 Chromosome Anomaly Detection
	7.1 B Allele Frequency filtering
	7.2 Loss of Heterozygosity
	7.3 Statistics
	7.4 Identify low quality samples

	8 SNP Quality Checks
	8.1 Duplicate Sample Discordance
	8.2 Mendelian Error Checking
	8.3 Hardy-Weinberg Equilibrium Testing

	9 Preliminary Association Tests
	9.1 Association Test
	9.2 QQ Plots
	9.3 ``Manhattan'' Plots of the P-Values
	9.4 SNP Cluster Plots

	10 Acknowledgements

