The CaDrA package currently supports four scoring functions to search for subsets of genomic features that are likely associated with a specific outcome of interest (e.g., protein expression, pathway activity, etc.)
ks
)revealer
)wilcox
)custom
)Below, we run candidate_search()
over the top 3 starting features using each of the four scoring functions described above.
Important Note:
topn_eval()
is equivalent to the new and recommended candidate_search()
functionlibrary(CaDrA)
library(pheatmap)
library(SummarizedExperiment)
binary features matrix
also known as Feature Set
(such as somatic mutations, copy number alterations, chromosomal translocations, etc.) The 1/0 row vectors indicate the presence/absence of ‘omics’ features in the samples. The Feature Set
can be a matrix or an object of class SummarizedExperiment from SummarizedExperiment package)Input Scores
) representing a functional response of interest (such as protein expression, pathway activity, etc.)
# Load pre-computed feature set
data(sim_FS)
# Load pre-computed input scores
data(sim_Scores)
The simulated dataset, sim_FS
, comprises of 1000 genomic features and 100 sample profiles. There are 10 left-skewed (i.e. True Positive or TP) and 990 uniformly-distributed (i.e. True Null or TN) features simulated in the dataset. Below is a heatmap of the first 100 features.
mat <- SummarizedExperiment::assay(sim_FS)
pheatmap::pheatmap(mat[1:100, ], color = c("white", "red"), cluster_rows = FALSE, cluster_cols = FALSE)
See ?ks_rowscore
for more details
ks_topn_l <- CaDrA::candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "ks_pval", # Use Kolmogorow-Smirnow scoring function
method_alternative = "less", # Use one-sided hypothesis testing
weights = NULL, # If weights is provided, perform a weighted-KS test
search_method = "both", # Apply both forward and backward search
top_N = 3, # Evaluate top 3 starting points for the search
max_size = 10, # Allow at most 10 features in meta-feature matrix
do_plot = FALSE, # We will plot it AFTER finding the best hits
best_score_only = FALSE # Return all results from the search
)
# Now we can fetch the feature set of top N features that corresponded to the best scores over the top N search
ks_topn_best_meta <- topn_best(ks_topn_l)
# Visualize best meta-feature result
meta_plot(topn_best_list = ks_topn_best_meta)
See ?wilcox_rowscore
for more details
wilcox_topn_l <- CaDrA::candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "wilcox_pval", # Use Wilcoxon Rank-Sum scoring function
method_alternative = "less", # Use one-sided hypothesis testing
search_method = "both", # Apply both forward and backward search
top_N = 3, # Evaluate top 3 starting points for the search
max_size = 10, # Allow at most 10 features in meta-feature matrix
do_plot = FALSE, # We will plot it AFTER finding the best hits
best_score_only = FALSE # Return all results from the search
)
# Now we can fetch the feature set of top N feature that corresponded to the best scores over the top N search
wilcox_topn_best_meta <- topn_best(topn_list = wilcox_topn_l)
# Visualize best meta-feature result
meta_plot(topn_best_list = wilcox_topn_best_meta)
See ?revealer_rowscore
for more details
revealer_topn_l <- CaDrA::candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "revealer", # Use REVEALER's CMI scoring function
search_method = "both", # Apply both forward and backward search
top_N = 3, # Evaluate top 3 starting points for the search
max_size = 10, # Allow at most 10 features in meta-feature matrix
do_plot = FALSE, # We will plot it AFTER finding the best hits
best_score_only = FALSE # Return all results from the search
)
# Now we can fetch the ESet of top feature that corresponded to the best scores over the top N search
revealer_topn_best_meta <- topn_best(topn_list = revealer_topn_l)
# Visualize best meta-feature result
meta_plot(topn_best_list = revealer_topn_best_meta)
See ?custom_rowscore
for more details
# A customized function using ks-test
customized_ks_rowscore <- function(FS, input_score, meta_feature=NULL, alternative="less", metric="pval"){
# Check if meta_feature is provided
if(!is.null(meta_feature)){
# Getting the position of the known meta features
locs <- match(meta_feature, row.names(FS))
# Taking the union across the known meta features
if(length(meta_feature) > 1) {
meta_vector <- as.numeric(ifelse(colSums(FS[meta_feature,]) == 0, 0, 1))
}else{
meta_vector <- as.numeric(FS[meta_feature,])
}
# Remove the meta features from the binary feature matrix
# and taking logical OR btw the remaining features with the meta vector
FS <- base::sweep(FS[-locs, , drop=FALSE], 2, meta_vector, `|`)*1
# Check if there are any features that are all 1s generated from
# taking the union between the matrix
# We cannot compute statistics for such features and thus they need
# to be filtered out
if(any(rowSums(FS) == ncol(FS))){
warning("Features with all 1s generated from taking the matrix union ",
"will be removed before progressing...\n")
FS <- FS[rowSums(FS) != ncol(FS), , drop=FALSE]
}
}
# KS is a ranked-based method
# So we need to sort input_score from highest to lowest values
input_score <- sort(input_score, decreasing=TRUE)
# Re-order the matrix based on the order of input_score
FS <- FS[, names(input_score), drop=FALSE]
# Compute the scores using the KS method
ks <- apply(FS, 1, function(r){
x = input_score[which(r==1)];
y = input_score[which(r==0)];
res <- ks.test(x, y, alternative=alternative)
return(c(res$statistic, res$p.value))
})
# Obtain score statistics
stat <- ks[1,]
# Obtain p-values and change values of 0 to the machine lowest value
# to avoid taking -log(0)
pval <- ks[2,]
pval[which(pval == 0)] <- .Machine$double.xmin
# Compute the -log(pval)
# Make sure scores has names that match the row names of FS object
pval <- -log(pval)
# Determine which metric to returned the scores
if(metric == "pval"){
scores <- pval
}else{
scores <- stat
}
names(scores) <- rownames(FS)
return(scores)
}
# Search for best features using a custom-defined function
custom_topn_l <- CaDrA::candidate_search(
FS = SummarizedExperiment::assay(sim_FS),
input_score = sim_Scores,
method = "custom", # Use custom scoring function
custom_function = customized_ks_rowscore, # Use a customized scoring function
custom_parameters = NULL, # Additional parameters to pass to custom_function
search_method = "both", # Apply both forward and backward search
top_N = 3, # Evaluate top 3 starting points for the search
max_size = 10, # Allow at most 10 features in meta-feature matrix
do_plot = FALSE, # We will plot it AFTER finding the best hits
best_score_only = FALSE # Return all results from the search
)
# Now we can fetch the feature set of top N feature that corresponded to the best scores over the top N search
custom_topn_best_meta <- topn_best(topn_list = custom_topn_l)
# Visualize best meta-feature result
meta_plot(topn_best_list = custom_topn_best_meta)
sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS
Matrix products: default
BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] CaDrA_1.0.1 pheatmap_1.0.12
[3] SummarizedExperiment_1.32.0 Biobase_2.62.0
[5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.0
[7] IRanges_2.36.0 S4Vectors_0.40.1
[9] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
[11] matrixStats_1.1.0 testthat_3.2.0
[13] devtools_2.4.5 usethis_2.2.2
[15] BiocStyle_2.30.0
loaded via a namespace (and not attached):
[1] bitops_1.0-7 tcltk_4.3.2 remotes_2.4.2.1
[4] rlang_1.1.2 magrittr_2.0.3 compiler_4.3.2
[7] callr_3.7.3 vctrs_0.6.4 reshape2_1.4.4
[10] stringr_1.5.0 profvis_0.3.8 pkgconfig_2.0.3
[13] crayon_1.5.2 fastmap_1.1.1 magick_2.8.1
[16] XVector_0.42.0 ellipsis_0.3.2 labeling_0.4.3
[19] caTools_1.18.2 utf8_1.2.4 promises_1.2.1
[22] rmarkdown_2.25 sessioninfo_1.2.2 ps_1.7.5
[25] purrr_1.0.2 xfun_0.41 zlibbioc_1.48.0
[28] cachem_1.0.8 jsonlite_1.8.7 highr_0.10
[31] later_1.3.1 DelayedArray_0.28.0 parallel_4.3.2
[34] prettyunits_1.2.0 R6_2.5.1 RColorBrewer_1.1-3
[37] bslib_0.5.1 stringi_1.7.12 pkgload_1.3.3
[40] brio_1.1.3 jquerylib_0.1.4 Rcpp_1.0.11
[43] bookdown_0.36 iterators_1.0.14 knitr_1.45
[46] R.utils_2.12.2 Matrix_1.6-1.1 httpuv_1.6.12
[49] R.cache_0.16.0 tidyselect_1.2.0 abind_1.4-5
[52] rstudioapi_0.15.0 yaml_2.3.7 doParallel_1.0.17
[55] gplots_3.1.3 codetools_0.2-19 miniUI_0.1.1.1
[58] misc3d_0.9-1 processx_3.8.2 pkgbuild_1.4.2
[61] lattice_0.22-5 tibble_3.2.1 plyr_1.8.9
[64] shiny_1.7.5.1 withr_2.5.2 evaluate_0.23
[67] desc_1.4.2 urlchecker_1.0.1 pillar_1.9.0
[70] BiocManager_1.30.22 KernSmooth_2.23-22 foreach_1.5.2
[73] generics_0.1.3 rprojroot_2.0.4 RCurl_1.98-1.13
[76] ggplot2_3.4.4 munsell_0.5.0 scales_1.2.1
[79] gtools_3.9.4 xtable_1.8-4 glue_1.6.2
[82] ppcor_1.1 tools_4.3.2 fs_1.6.3
[85] grid_4.3.2 colorspace_2.1-0 GenomeInfoDbData_1.2.11
[88] cli_3.6.1 fansi_1.0.5 S4Arrays_1.2.0
[91] dplyr_1.1.3 gtable_0.3.4 R.methodsS3_1.8.2
[94] sass_0.4.7 digest_0.6.33 SparseArray_1.2.2
[97] farver_2.1.1 htmlwidgets_1.6.2 memoise_2.0.1
[100] htmltools_0.5.7 R.oo_1.25.0 lifecycle_1.0.4
[103] mime_0.12 MASS_7.3-60