Author: Zuguang Gu ( [email protected] )
Date: 2018-06-19
In the supplementaries of the ComplexHeatmap paper, there are four comprehensive examples which are applied on real-world high-throughput datasets. The examples can be found here.
Also my blog has some examples and tips for making better complex heatmaps.
Heatmaps are very popular to visualize gene expression matrix. Rows in the matrix correspond to genes and more information on these genes can be attached after the expression heatmap.
In following example, the big heatmap visualize relative expression for genes, then the next is the absolute expression. Also gene length and gene type (i.e. protein coding or lincRNA) are visualized.
library(ComplexHeatmap)
library(circlize)
expr = readRDS(paste0(system.file(package = "ComplexHeatmap"), "/extdata/gene_expression.rds"))
mat = as.matrix(expr[, grep("cell", colnames(expr))])
base_mean = rowMeans(mat)
mat_scaled = t(apply(mat, 1, scale))
type = gsub("s\\d+_", "", colnames(mat))
ha = HeatmapAnnotation(df = data.frame(type = type))
Heatmap(mat_scaled, name = "expression", km = 5, col = colorRamp2(c(-2, 0, 2), c("green", "white", "red")),
top_annotation = ha, top_annotation_height = unit(4, "mm"),
show_row_names = FALSE, show_column_names = FALSE) +
Heatmap(base_mean, name = "base_mean", show_row_names = FALSE, width = unit(5, "mm")) +
Heatmap(expr$length, name = "length", col = colorRamp2(c(0, 1000000), c("white", "orange")),
heatmap_legend_param = list(at = c(0, 200000, 400000, 60000, 800000, 1000000),
labels = c("0kb", "200kb", "400kb", "600kb", "800kb", "1mb")),
width = unit(5, "mm")) +
Heatmap(expr$type, name = "type", width = unit(5, "mm"))
Following example visualizes correlation between methylation and expression, as well as other annotation information (data are randomly generated). In the heatmap, each row corresponds to a differentially methylated regions (DMRs). From left to right, heatmaps are:
pvclust package provides a robust way to test the stability of the clustering
by random sampling from original data. Here you can organize the heatmap by the clustering
returned from pvclust()
.
library(ComplexHeatmap)
library(MASS)
library(pvclust)
data(Boston)
boston.pv <- pvclust(Boston, nboot=100)
## Bootstrap (r = 0.5)... Done.
## Bootstrap (r = 0.6)... Done.
## Bootstrap (r = 0.7)... Done.
## Bootstrap (r = 0.8)... Done.
## Bootstrap (r = 0.9)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.1)... Done.
## Bootstrap (r = 1.2)... Done.
## Bootstrap (r = 1.3)... Done.
## Bootstrap (r = 1.4)... Done.
plot(boston.pv)
Since by default pvclust
clusters columns by 'correlation' method, we scale columns for
Boston
data set to see the relative trend.
Boston_scaled = apply(Boston, 2, scale)
Heatmap(Boston_scaled, cluster_columns = boston.pv$hclust, heatmap_legend_param = list(title = "Boston"))
set.seed(123)
mat = matrix(rnorm(100), 10)
heatmap(mat, col = topo.colors(50))
Compare to the native heatmap()
, Heatmap()
can give more accurate interpolation
for colors for continous values.
Heatmap(mat, col = topo.colors(50), color_space = "sRGB",
row_dend_width = unit(2, "cm"),
column_dend_height = unit(2, "cm"), row_dend_reorder = TRUE,
column_dend_reorder = TRUE)
Following code reproduces the heatmap introduced here and here.
mat = readRDS(paste0(system.file("extdata", package = "ComplexHeatmap"), "/measles.rds"))
ha1 = HeatmapAnnotation(dist1 = anno_barplot(colSums(mat), bar_width = 1, gp = gpar(col = NA, fill = "#FFE200"),
border = FALSE, axis = TRUE))
ha2 = rowAnnotation(dist2 = anno_barplot(rowSums(mat), bar_width = 1, gp = gpar(col = NA, fill = "#FFE200"),
border = FALSE, which = "row", axis = TRUE), width = unit(1, "cm"))
ha_column = HeatmapAnnotation(cn = function(index) {
year = as.numeric(colnames(mat))
which_decade = which(year %% 10 == 0)
grid.text(year[which_decade], which_decade/length(year), 1, just = c("center", "top"))
})
Heatmap(mat, name = "cases", col = colorRamp2(c(0, 800, 1000, 127000), c("white", "cornflowerblue", "yellow", "red")),
cluster_columns = FALSE, show_row_dend = FALSE, rect_gp = gpar(col= "white"), show_column_names = FALSE,
row_names_side = "left", row_names_gp = gpar(fontsize = 10),
column_title = 'Measles cases in US states 1930-2001\nVaccine introduced 1961',
top_annotation = ha1, top_annotation_height = unit(1, "cm"),
bottom_annotation = ha_column, bottom_annotation_height = grobHeight(textGrob("1900"))) + ha2
decorate_heatmap_body("cases", {
i = which(colnames(mat) == "1961")
x = i/ncol(mat)
grid.lines(c(x, x), c(0, 1), gp = gpar(lwd = 2))
grid.text("Vaccine introduced", x, unit(1, "npc") + unit(5, "mm"))
})
There is no space allocated for annotation name, but when the annotation name is too long, you can add paddings of the whole plot to give empty spaces for the annotation names.
ha = HeatmapAnnotation(df = data.frame(a_long_long_long_annotation_name = runif(10)),
show_legend = FALSE)
ht = Heatmap(matrix(rnorm(100), 10), name = "foo", top_annotation = ha)
# because the default width for row cluster is 1cm
padding = unit.c(unit(2, "mm"), grobWidth(textGrob("a_long_long_long_annotation_name")) - unit(1, "cm"),
unit(c(2, 2), "mm"))
draw(ht, padding = padding)
decorate_annotation("a_long_long_long_annotation_name", {
grid.text("a_long_long_long_annotation_name", 0, 0.5, just = "right")
})
sessionInfo()
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel grid stats graphics grDevices utils datasets methods
## [10] base
##
## other attached packages:
## [1] pvclust_2.0-0 MASS_7.3-50 RColorBrewer_1.1-2 GetoptLong_0.1.7
## [5] dendextend_1.8.0 dendsort_0.3.3 cluster_2.0.7-1 HilbertCurve_1.10.1
## [9] GenomicRanges_1.32.3 GenomeInfoDb_1.16.0 IRanges_2.14.10 S4Vectors_0.18.3
## [13] BiocGenerics_0.26.0 circlize_0.4.4 ComplexHeatmap_1.18.1 knitr_1.20
## [17] markdown_0.8
##
## loaded via a namespace (and not attached):
## [1] fastcluster_1.1.25 shape_1.4.4 modeltools_0.2-21 kernlab_0.9-26
## [5] lattice_0.20-35 colorspace_1.3-2 viridisLite_0.3.0 rlang_0.2.1
## [9] pillar_1.2.3 prabclus_2.2-6 fpc_2.1-11 GenomeInfoDbData_1.1.0
## [13] plyr_1.8.4 robustbase_0.93-0 stringr_1.3.1 zlibbioc_1.26.0
## [17] munsell_0.5.0 gtable_0.2.0 GlobalOptions_0.1.0 mvtnorm_1.0-8
## [21] evaluate_0.10.1 flexmix_2.3-14 class_7.3-14 highr_0.7
## [25] DEoptimR_1.0-8 trimcluster_0.1-2 Rcpp_0.12.17 scales_0.5.0
## [29] diptest_0.75-7 XVector_0.20.0 mime_0.5 gridExtra_2.3
## [33] rjson_0.2.20 ggplot2_2.2.1 png_0.1-7 stringi_1.2.3
## [37] tools_3.5.0 HilbertVis_1.38.0 bitops_1.0-6 magrittr_1.5
## [41] RCurl_1.95-4.10 lazyeval_0.2.1 tibble_1.4.2 whisker_0.3-2
## [45] viridis_0.5.1 mclust_5.4 nnet_7.3-12 compiler_3.5.0